cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A051524 Second unsigned column of triangle A051338.

Original entry on oeis.org

0, 1, 13, 146, 1650, 19524, 245004, 3272688, 46536624, 703404576, 11277554400, 191338156800, 3427105248000, 64651956364800, 1281740285145600, 26648514872985600, 579892995734169600, 13183403757582643200
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=6) ~ exp(-x)/x^2*(1 - 13/x + 146/x^2 - 1650/x^3 + 19524/x^4 - 245004/x^5 + 3272688/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S.: see reference given for triangle A051338.

Crossrefs

Cf. A001725 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs, Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 5; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051338(n, 1)*(-1)^(n-1);
E.g.f.: -log(1-x)/(1-x)^6.
For n>=1, a(n) = n!*Sum_{k=0..n-1} (-1)^k*binomial(-6,k)/(n-k). - Milan Janjic, Dec 14 2008
a(n) = n!*[5]h(n), where [k]h(n) denotes the k-th successive summation of h(n) from 0 to n. - Gary Detlefs, Jan 04 2011
Conjecture: a(n) +(-2*n-9)*a(n-1) +(n+4)^2*a(n-2)=0. - R. J. Mathar, Aug 04 2013

A051525 Third unsigned column of triangle A051338.

Original entry on oeis.org

0, 0, 1, 21, 335, 5000, 74524, 1139292, 18083484, 299705400, 5198985576, 94461323616, 1797180658272, 35776357096896, 744402741205824, 16169795109262080, 366214212167489280, 8636605663418933760
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=6) ~ exp(-x)/x^3*(1 - 21/x + 335/x^2 - 5000/x^3 + 74524/x^4 - 1139292/x^5 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051338.

Crossrefs

Cf. A001725 (m=0), A051524 (m=1) unsigned columns.

Formula

a(n) = A051338(n, 2)*(-1)^n; e.g.f.: (log(1-x))^2/(2*(1-x)^6).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,6)|, for n>=1. - Milan Janjic, Dec 21 2008

A001720 a(n) = n!/24.

Original entry on oeis.org

1, 5, 30, 210, 1680, 15120, 151200, 1663200, 19958400, 259459200, 3632428800, 54486432000, 871782912000, 14820309504000, 266765571072000, 5068545850368000, 101370917007360000, 2128789257154560000, 46833363657400320000, 1077167364120207360000
Offset: 4

Views

Author

Keywords

Comments

The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=5) ~ exp(-x)/x*(1 - 5/x + 30/x^2 - 210/x^3 + 1680/x^4 - 15120/x^5 + 151200/x^6 - 1663200/x^7 + ...) leads to this sequence. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n)= A049353(n-3, 1) (first column of triangle).
E.g.f. if offset 0: 1/(1-x)^5.
a(n) = A173333(n,4). - Reinhard Zumkeller, Feb 19 2010
a(n) = A245334(n,n-4) / 5. - Reinhard Zumkeller, Aug 31 2014
G(x) = (1 - (1 + x)^(-4)) / 4 = x - 5 x^2/2! + 30 x^3/3! - ..., an e.g.f. for this signed sequence (for n!/4!), is the compositional inverse of H(x) = (1 - 4*x)^(-1/4) - 1 = x + 5 x^2/2! + 45 x^3/3! + ..., an e.g.f. for A007696. Cf. A094638, A001710 (for n!/2!), and A001715 (for n!/3!). Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
E.g.f.: x^4 / (4! * (1 - x)). - Ilya Gutkovskiy, Jul 09 2021
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=4} 1/a(n) = 24*e - 64.
Sum_{n>=4} (-1)^n/a(n) = 24/e - 8. (End)

A001725 a(n) = n!/5!.

Original entry on oeis.org

1, 6, 42, 336, 3024, 30240, 332640, 3991680, 51891840, 726485760, 10897286400, 174356582400, 2964061900800, 53353114214400, 1013709170073600, 20274183401472000, 425757851430912000, 9366672731480064000, 215433472824041472000, 5170403347776995328000
Offset: 5

Views

Author

Keywords

Comments

The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=6) ~ exp(-x)/x*(1 - 6/x + 42/x^2 - 336/x^3 + 3024/x^4 - 30240/x^5 + 332640/x^6 - 3991680/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)= A049374(n-4), n >= 1 (first column of triangle). Cf. A049460, A051339. a(n)= A051338(n-5, 0)*(-1)^(n-1) (first unsigned column of triangle).

Programs

Formula

E.g.f. if offset 0: 1/(1-x)^6.
a(n) = A173333(n,5). - Reinhard Zumkeller, Feb 19 2010
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+6)/(x*(k+6) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: W(0)/(40*x^2) -1/(20*x^2) -1/(5*x) , where W(k) = 1 + 1/( 1 - x*(k+4)/( x*(k+4) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013
a(n) = A245334(n,n-5) / 6. - Reinhard Zumkeller, Aug 31 2014
E.g.f.: x^5 / (5! * (1 - x)). - Ilya Gutkovskiy, Jul 09 2021
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=5} 1/a(n) = 120*e - 325.
Sum_{n>=5} (-1)^(n+1)/a(n) = 45 - 120/e. (End)

Extensions

More terms from Harvey P. Dale, Dec 20 2014

A001730 a(n) = n!/6!.

Original entry on oeis.org

1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960, 1816214400, 29059430400, 494010316800, 8892185702400, 168951528345600, 3379030566912000, 70959641905152000, 1561112121913344000, 35905578804006912000, 861733891296165888000, 21543347282404147200000
Offset: 6

Views

Author

Keywords

Comments

The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=7) ~ exp(-x)/x*(1 - 7/x + 56/x^2 - 504/x^3 + 5040/x^4 - 55440/x^5 + 665280/x^6 - 8648640/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n)= A051339(n-6, 0)*(-1)^n (first unsigned column of triangle).
E.g.f.: x^6/(6!*(1-x)). [corrected by Alois P. Heinz, Jul 09 2021]
a(n) = A173333(n,6). - Reinhard Zumkeller, Feb 19 2010
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+7)/(x*(k+7) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
a(n) = A245334(n,n-6) / 7. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=6} 1/a(n) = 720*e - 1956.
Sum_{n>=6} (-1)^n/a(n) = 720/e - 264. (End)

A105954 Array read by descending antidiagonals: A(n, k) = (n + 1)! * H(k, n + 1), where H(n, k) is a higher-order harmonic number, H(0, k) = 1/k and H(n, k) = Sum_{j=1..k} H(n-1, j), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 11, 6, 1, 7, 26, 50, 24, 1, 9, 47, 154, 274, 120, 1, 11, 74, 342, 1044, 1764, 720, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0

Views

Author

Leroy Quet, Jun 26 2005

Keywords

Comments

Antidiagonal sums are A093345 (n! * (1 + Sum_{i=1..n}((1/i)*Sum_{j=0..i-1} 1/j!))). - Gerald McGarvey, Aug 27 2005
A recasting of A093905 and A067176. - R. J. Mathar, Mar 01 2009
The triangular array of this sequence is the reversal of A165675 which is related to the asymptotic expansion of the higher order exponential integral E(x,m=2,n); see also A165674. - Johannes W. Meijer, Oct 16 2009

Examples

			A(2, 2) = (1 + (1 + 1/2) + (1 + 1/2 + 1/3))*6 = 26.
Array A(n, k) begins:
  [n\k]  0       1       2        3        4        5          6
  -------------------------------------------------------------------
  [0]    1,      1,      1,       1,       1,       1,         1, ...
  [1]    1,      3,      5,       7,       9,       11,       13, ...
  [2]    2,     11,     26,      47,      74,      107,      146, ...
  [3]    6,     50,    154,     342,     638,     1066,     1650, ...
  [4]   24,    274,   1044,    2754,    5944,    11274,    19524, ...
  [5]  120,   1764,   8028,   24552,   60216,   127860,   245004, ...
  [6]  720,  13068,  69264,  241128,  662640,  1557660,  3272688, ...
  [7] 5040, 109584, 663696, 2592720, 7893840, 20355120, 46536624, ...
		

Crossrefs

Column 0 = A000142 (factorial numbers).
Column 1 = A000254 (Stirling numbers of first kind s(n, 2)) starting at n=1.
Column 2 = A001705 (Generalized Stirling numbers: a(n) = n!*Sum_{k=0..n-1}(k+1)/(n-k)), starting at n=1.
Column 3 = A001711 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*3^k*stirling1(n+1, k+1)).
Column 4 = A001716 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*4^k*stirling1(n+1, k+1)).
Column 5 = A001721 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*binomial(k+1, 1)*5^k*stirling1(n+1, k+1)).
Column 6 = A051524 (2nd unsigned column of A051338) starting at n=1.
Column 7 = A051545 (2nd unsigned column of A051339) starting at n=1.
Column 8 = A051560 (2nd unsigned column of A051379) starting at n=1.
Column 9 = A051562 (2nd unsigned column of A051380) starting at n=1.
Column 10= A051564 (2nd unsigned column of A051523) starting at n=1.
2nd row is A005408 (2n - 1, starting at n=1).
3rd row is A080663 (3n^2 - 1, starting at n=1).
Main diagonal gives A384024.

Programs

  • Maple
    H := proc(n, k) option remember; if n = 0 then 1/k else add(H(n - 1, j), j = 1..k) fi end: A := (n, k) -> (n + 1)!*H(k, n + 1):
    # Alternative with standard harmonic number:
    A := (n, k) -> if k = 0 then n! else (harmonic(n + k) - harmonic(k - 1))*(n + k)! / (k - 1)! fi:
    for n from 0 to 7 do seq(A(n, k), k = 0..6) od;
    # Alternative with hypergeometric formula:
    A := (n, k) -> (n+1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k+1], 1):
    seq(print(seq(simplify(A(n, k)), k = 0..6)), n=0..7); # Peter Luschny, Jul 01 2022
  • Mathematica
    H[0, m_] := 1/m; H[n_, m_] := Sum[H[n - 1, k], {k, m}]; a[n_, m_] := m!H[n, m]; Flatten[ Table[ a[i, n - i], {n, 10}, {i, n - 1, 0, -1}]]
    Table[ a[n, m], {m, 8}, {n, 0, m + 1}] // TableForm (* to view the table *)
    (* Robert G. Wilson v, Jun 27 2005 *)
  • PARI
    a(n, k) = polcoef(prod(j=0, n, 1+(j+k)*x), n); \\ Seiichi Manyama, May 19 2025

Formula

A(n, k) = (Harmonic(n + k) - Harmonic(k - 1))*(n + k)!/(k - 1)! if k > 0, otherwise n!.
From Gerald McGarvey, Aug 27 2005, edited by Peter Luschny, Jul 02 2022: (Start)
E.g.f. for column k: -log(1 - x)/(x*(1 - x)^k).
Row 3 is r(n) = 4*n^3 + 18*n^2 + 22*n + 6.
Row 4 is r(n) = 5*n^4 + 40*n^3 + 105*n^2 + 100*n + 24.
Row 5 is r(n) = 6*n^5 + 75*n^4 + 340*n^3 + 675*n^2 + 548*n + 120.
Row 6 is r(n) = 7*n^6 + 126*n^5 + 875*n^4 + 2940*n^3 + 4872*n^2 + 3528*n + 720.
Row 7 is r(n) = 8*n^7 + 196*n^6 + 1932*n^5 + 9800*n^4 + 27076*n^3 + 39396*n^2 + 26136*n + 5040.
The sum of the polynomial coefficients for the n-th row is |S1(n, 2)|, which are the unsigned Stirling1 numbers which appear in column 1.
A(m, n) = Sum_{k=1..m} n*A094645(m, n)*(n+1)^(k-1). (A094645 is Generalized Stirling number triangle of first kind, e.g.f.: (1-y)^(1-x).) (End)
In Gerard McGarvey's formulas for the row coefficients we find Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; see A165674. - Johannes W. Meijer, Oct 16 2009
A(n, k) = (n + 1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k + 1], 1). - Peter Luschny, Jul 01 2022
A(n,k) = [x^n] Product_{j=0..n} (1 + (j+k)*x). - Seiichi Manyama, May 19 2025

Extensions

More terms from Robert G. Wilson v, Jun 27 2005
Edited by Peter Luschny, Jul 02 2022

A051523 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -10, 1, 110, -21, 1, -1320, 362, -33, 1, 17160, -6026, 791, -46, 1, -240240, 101524, -17100, 1435, -60, 1, 3603600, -1763100, 358024, -38625, 2335, -75, 1, -57657600, 31813200, -7491484, 976024, -75985, 3535, -91, 1, 980179200, -598482000, 159168428, -24083892, 2267769, -136080, 5082, -108, 1
Offset: 0

Views

Author

Keywords

Comments

a(n,m)= ^10P_n^m in the notation of the given reference with a(0,0) := 1. The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(10+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1. In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(10*t),exp(t)-1).

Examples

			{1}; {-10,1}; {110,-21,1}; {-1320,362,-331}; ... s(2,x)= 110-21*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
		

Crossrefs

The first (m=0) unsigned column sequence is A049398. Row sums (signed triangle): A049389(n)*(-1)^n. Row sums (unsigned triangle): A051431(n).

Programs

  • Haskell
    a051523 n k = a051523_tabl !! n !! k
    a051523_row n = a051523_tabl !! n
    a051523_tabl = map fst $ iterate (\(row, i) ->
       (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 10)
    -- Reinhard Zumkeller, Mar 12 2014
  • Mathematica
    a[n_, m_] := Pochhammer[m + 1, n - m] SeriesCoefficient[Log[1 + x]^m/(1 + x)^10, {x, 0, n}];
    Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)

Formula

a(n, m)= a(n-1, m-1) - (n+9)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^10).
Triangle (signed) = [ -10, -1, -11, -2, -12, -3, -13, -14, -4, ...] DELTA A000035; triangle (unsigned) = [10, 1, 11, 2, 12, 3, 13, 4, 14, 5, 15, ...] DELTA A000035; where DELTA is Deléham's operator defined in A084938.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,10), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

A087748 Triangle formed by reading triangle of Stirling numbers of the first kind (A048994) mod 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 0

Author

Philippe Deléham, Oct 02 2003

Keywords

Examples

			Triangle begins:
1,
0, 1,
0, 1, 1,
0, 0, 1, 1,
0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
...
		

References

  • Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004). - From N. J. A. Sloane, Jun 03 2012

Crossrefs

Also parity of triangles A049444, A049459, A051338, A051379, A051523.

Formula

T(n, k) = A087755(n, k) = A048994(n, k) mod 2 = A047999([n/2], k-[(n+1)/2]) = T(n-2, k-2) XOR T(n-2, k-1) with T(0, 0) = T(1, 1) = 1 and T(1, 0) = 0; T(2n, k) = T(2n-1, k-1) XOR T(2n-1, k); T(2n+1, k) = T(2n, k-1). - Henry Bottomley, Dec 01 2003

Extensions

Edited and extended by Henry Bottomley, Dec 01 2003

A087745 Numbers A001317 repeated.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 15, 15, 17, 17, 51, 51, 85, 85, 255, 255, 257, 257, 771, 771, 1285, 1285, 3855, 3855, 4369, 4369, 13107, 13107, 21845, 21845, 65535, 65535, 65537, 65537, 196611, 196611, 327685, 327685, 983055, 983055, 1114129, 1114129
Offset: 0

Author

Philippe Deléham, Oct 02 2003

Keywords

Comments

Triangles A049444, A049459, A051338, A051379, A051523 (Mitrinovic's triangles) mod 2 converted to decimal.
Sequence [1, 3, 5, 15, 17, 51, 85, 255, 257, ...] = A001317.

Programs

  • Python
    def A087745(n): return sum((bool(~(m:=n>>1)&m-k)^1)<>1)+1)) # Chai Wah Wu, May 02 2023

Extensions

Definition corrected and edited by Omar E. Pol, Dec 24 2008
Showing 1-9 of 9 results.