cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002585 Largest prime factor of 1 + (product of first n primes).

Original entry on oeis.org

3, 7, 31, 211, 2311, 509, 277, 27953, 703763, 34231, 200560490131, 676421, 11072701, 78339888213593, 13808181181, 18564761860301, 19026377261, 525956867082542470777, 143581524529603, 2892214489673, 16156160491570418147806951, 96888414202798247, 1004988035964897329167431269
Offset: 1

Views

Author

Keywords

Comments

Based on Euclid's proof that there are infinitely many primes.
The products of the first primes are called primorial numbers. - Franklin T. Adams-Watters, Jun 12 2014

References

  • M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
  • M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@Rest[FoldList[Times,1,Prime[Range[30]]]+1] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=my(f=factor(prod(i=1,n,prime(i))+1)[,1]); f[#f] \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = A006530(A006862(n)). - Amiram Eldar, Feb 13 2020

Extensions

More terms from Labos Elemer, May 02 2000
More terms from Robert G. Wilson v, Mar 24 2001
Terms up to a(81) in b-file added by Sean A. Irvine, Apr 19 2014
Terms a(82)-a(87) in b-file added by Amiram Eldar, Feb 13 2020
Terms a(88)-a(98) in b-file added by Max Alekseyev, Aug 26 2021

A104366 Smallest prime factor of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 13, 2521, 7561, 103, 415801, 1247401, 167, 191, 211, 127, 23, 40357, 1099944846001, 349, 41, 251, 37, 2243, 146100174169950001, 103, 53, 1217, 1156675078903494150001, 47, 2939, 251, 857, 41, 547, 13127, 47, 48563, 281, 1336484560722851, 479, 373, 2179, 577670972464621571, 17491, 1399, 97, 22893547
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

a(n) = A020639(A104365(n)).

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1, 1, vecmax(factor(n)[,1])); \\ A006530
    spf(n) = if (n==1, 1, vecmin(factor(n)[,1])); \\ A020639
    a(n) = spf(prod(i=2, n, gpf(i))+1); \\ Michel Marcus, Feb 21 2023

Extensions

Corrected by D. S. McNeil, Dec 10 2010

A065314 Smallest prime divisor of (n-th primorial - (n+1)-st prime).

Original entry on oeis.org

23, 199, 2297, 30013, 41, 9699667, 2819, 53, 21701, 79, 163, 181, 61, 1619, 14669, 307, 103, 306091, 907, 3217644767340672907899084554047, 267064515689275851355624017992701, 23768741896345550770650537601358213
Offset: 3

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, difference=23, so a(3)=23.
		

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger[Times @@ #1 - #2][[1, 1, 1]] & @@ Reverse@ TakeDrop[#, -1] &, Drop[#, 3] &@ FoldList[Flatten@ Append[{#1}, #2] &, Prime@ Range@ 25]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    a(n) = vecmin(factor(prod(k=1, n, prime(k)) - prime(n+1))[,1]); \\ Michel Marcus, Jul 16 2017

Formula

a(n) = A020639( A002110(n) - A000040(n+1) ).

A065315 Smallest prime divisor of n-th primorial + (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 13, 23, 30047, 510529, 9699713, 127, 107, 433, 1093, 375569, 13082761331670077, 941879, 32589158477190044789, 1922760350154212639131, 4129, 92388407, 5879, 40729680599249024150621323549, 1783, 4903, 10279098043, 191, 131, 109, 163, 337, 20261, 673327, 6599, 181
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, sum=37, so a(3)=37.
		

Crossrefs

Programs

  • PARI
    a(n) = vecmin(factor(prod(i=1, n, prime(i)) + prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A020639(A002110(n) + A000040(n+1)).
a(n) = A020639(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

More terms from Michel Marcus, Aug 29 2019

A065316 Largest prime divisor of n-th primorial - (n+1)-st prime.

Original entry on oeis.org

23, 199, 2297, 30013, 12451, 9699667, 79139, 122069683, 9241993, 77184383, 211941187, 72280449346243, 73629553, 142226610221, 131076443530861861, 382046844818915214929, 1348764323657, 1822793973448088839487, 217379667530071, 3217644767340672907899084554047, 267064515689275851355624017992701
Offset: 3

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, 4th prime=7, difference=23, so a(3)=23.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,pmrl},pmrl=FoldList[Times,Prime[Range[nn]]];FactorInteger[ #][[-1,1]]&/@(Drop[#[[1]]-#[[2]]&/@Thread[ {pmrl,Prime[ Range[ 2,nn+1]]}],2])] (* Harvey P. Dale, Dec 30 2021 *)
  • PARI
    a(n) = vecmax(factor(prod(i=1, n, prime(i)) - prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A006530(A002110(n)-A000040(n+1)).

Extensions

More terms from Michel Marcus, Aug 29 2019

A065317 Largest prime divisor of the sum of the n-th primorial and the (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 17, 101, 30047, 510529, 9699713, 1427, 76829, 789077, 659863, 810104837, 13082761331670077, 652833094897, 32589158477190044789, 1922760350154212639131, 28406001782370300553, 770555057, 94904036422299534098897, 40729680599249024150621323549
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n = 4, 4th primorial = 210, prime(5) = 11, sum = 210 + 11 = 13 * 17, a(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},FactorInteger[#][[-1,1]]&/@(Total/@Thread[{FoldList[ Times,Prime[Range[nn]]],Prime[Range[nn]+1]}])] (* Harvey P. Dale, Jul 26 2020 *)
  • PARI
    a(n) = vecmax(factor(vecprod(primes(n)) + prime(n+1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A002110(n) + A000040(n+1)).
a(n) = A006530(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

Name clarified by Felix Fröhlich, May 26 2022

A051454 a(n) is the smallest prime factor of 1 + lcm(1..k) where k is the n-th prime power A000961(n).

Original entry on oeis.org

2, 3, 7, 13, 61, 421, 29, 2521, 19, 89, 71, 1693, 232792561, 6659, 26771144401, 331, 101, 72201776446801, 1801, 173, 54941, 89, 442720643463713815201, 593, 5171, 239, 1222615931, 103, 7265496855919, 6562349363, 4447, 147099357127, 1931
Offset: 1

Views

Author

Keywords

Examples

			1 + lcm(1..8) = 29^2, so its smallest prime divisor is 29; it occurs as the 7th term in the sequence because 8 is the 7th prime power: A000961(7) = 8.
		

Crossrefs

Programs

  • Magma
    a:=[]; lcm:=1; for k in [1..83] do if (k eq 1) or IsPrimePower(k) then lcm:=Lcm(lcm,k); a:=a cat [Factorization(1+lcm)[1][1]]; end if; end for; a; // Jon E. Schoenfield, May 28 2018
    
  • Mathematica
    Join[{2},With[{ppwr=Select[Range[200],PrimePowerQ]},Table[FactorInteger[LCM@@Take[ ppwr,n]+ 1][[1,1]],{n,40}]]] (* Harvey P. Dale, May 28 2024 *)
  • PARI
    a(n) = {my(nb = 1, lc = 1, k = 2); while (nb != n, if (isprimepower(k), nb++; lc = lcm(lc, k)); k++;); vecmin(factor(lc +1)[,1]);} \\ Michel Marcus, May 29 2018
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange, primefactors
    def A051454(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return min(primefactors(1+prod(p**integer_log(m, p)[0] for p in primerange(m+1)))) # Chai Wah Wu, Aug 15 2024

A068488 m for which p(m) is the least prime dividing #p(n) + 1, i.e., primorial n-th prime augmented by 1 (A005234).

Original entry on oeis.org

2, 4, 11, 47, 344, 17, 8, 69, 66, 67, 8028643011, 42, 18, 39, 162, 21, 59, 48, 2311331257, 179, 369, 2477, 23289, 32, 172011, 75668, 342, 35, 28757, 356411, 243, 297, 152
Offset: 1

Views

Author

Lekraj Beedassy, Mar 11 2002

Keywords

Comments

Since #P34 + 1 has two rather large factors, we need the number of primes less than or equal to 678279959005528882498681487.

Crossrefs

Cf. A068489.

Programs

  • Mathematica
    Do[ Print[ PrimePi[ FactorInteger[ Product[ Prime[k], {k, 1, n}] + 1] [[1, 1]]]], {n, 1, 20} ]

Formula

a(n) = PrimePi(A051342).

Extensions

Edited and extended by Robert G. Wilson v, Mar 12 2002
Showing 1-8 of 8 results.