cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A054988 Number of prime divisors of 1 + (product of first n primes), with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 4, 2, 2, 4, 2, 3, 2, 4, 3, 2, 4, 4, 3, 3, 5, 3, 6, 2, 3, 2, 5, 4, 4, 2, 6, 3, 4, 3, 5, 6, 7, 2, 6, 3, 5, 3, 4, 2, 6, 5, 4, 5, 3, 5, 5, 5, 3, 3, 5, 5, 6, 3, 4, 4, 7, 5, 3, 4, 1, 2, 5, 5, 5, 4, 5, 3, 5, 4, 6, 5, 8
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

Prime divisors are counted with multiplicity. - Harvey P. Dale, Oct 23 2020
It is an open question as to whether omega(p#+1) = bigomega(p#+1) = a(n); that is, as to whether the Euclid numbers are squarefree. Any square dividing p#+1 must exceed 2.5*10^15 (see Vardi, p. 87). - Sean A. Irvine, Oct 21 2023

Examples

			a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
		

References

  • Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.

Crossrefs

Programs

  • Maple
    A054988 := proc(n)
        numtheory[bigomega](1+mul(ithprime(i),i=1..n)) ;
    end proc:
    seq(A054988(n),n=1..20) ; # R. J. Mathar, Mar 09 2022
  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#+1]&/@FoldList[Times,Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
  • PARI
    a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = A001222(A006862(n)). - Michel Marcus, Mar 07 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019

A051342 Smallest prime factor of 1 + (product of first n primes).

Original entry on oeis.org

3, 7, 31, 211, 2311, 59, 19, 347, 317, 331, 200560490131, 181, 61, 167, 953, 73, 277, 223, 54730729297, 1063, 2521, 22093, 265739, 131, 2336993, 960703, 2297, 149, 334507, 5122427, 1543, 1951, 881, 678279959005528882498681487, 87549524399, 23269086799180847
Offset: 1

Views

Author

Keywords

Comments

Based on Euclid's proof that there are infinitely many primes.

Crossrefs

Programs

  • Maple
    a:= proc(n)
    local N, F, i;
      N:= 1 + mul(ithprime(i),i=1..n);
      F:= select(type,map(t->t[1],ifactors(N,easy)[2]),integer);
    if nops(F) >= 1 then return min(F) fi;
      min(map(t->t[1],ifactors(N)[2]))
    end proc:
    seq(a(n),n=1..40); # Robert Israel, Oct 19 2014
  • Mathematica
    Map[FactorInteger,
       Table[Product[Prime[n], {n, 1, m}] + 1, {m, 1, 36}]][[All,
    1]][[All, 1]] (* Geoffrey Critzer, Oct 19 2014 *)
    FactorInteger[#][[1,1]]&/@(FoldList[Times,Prime[Range[40]]]+1) (* Harvey P. Dale, Oct 08 2021 *)
  • PARI
    a(n) = factor(1 + prod(i=1, n, prime(i)))[1, 1]; \\ Michel Marcus, Dec 10 2013

Formula

a(n) = A020639(1+A002110(n)).

Extensions

One more term from Michel Marcus, Dec 10 2013

A002584 Largest prime factor of product of first n primes - 1, or 1 if no such prime exists.

Original entry on oeis.org

1, 5, 29, 19, 2309, 30029, 8369, 929, 46027, 81894851, 876817, 38669, 304250263527209, 92608862041, 59799107, 1143707681, 69664915493, 1146665184811, 17975352936245519, 2140320249725509
Offset: 1

Views

Author

Keywords

Comments

The products of the first primes are called primorial numbers. - Franklin T. Adams-Watters, Jun 12 2014

References

  • M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
  • M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Prepend[Table[ Max[Transpose[FactorInteger[(Times @@ Prime[Range[i]]) - 1]][[1]]], {i, 2, 20}], 1]
    FactorInteger[#][[-1,1]]&/@Rest[FoldList[Times,1,Prime[Range[20]]]-1] (* Harvey P. Dale, Feb 27 2013 *)
  • PARI
    a(n)=if(n>1, my(f=factor(prod(i=1,f,prime(i)))[,1]); f[#f], 1) \\ Charles R Greathouse IV, Feb 08 2017

Formula

a(n) = A006530(A057588(n)). - Amiram Eldar, Feb 13 2020

Extensions

More terms from J. L. Selfridge
Further terms from Labos Elemer, Oct 25 2000

A104367 Greatest prime factor of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 97, 2521, 7561, 367, 415801, 1247401, 97103, 594311, 2689891, 269, 415147, 1434493, 1099944846001, 13421, 938977307561, 1687166397251, 6121943187511, 13027211250107, 146100174169950001, 1389833, 10603380543703, 2129284819, 1156675078903494150001, 132597517693, 47172675889, 11159737, 20350106034371
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]][[-1, 1]]; Array[a, 76] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A006530(A104365(n)).

Extensions

Corrected by T. D. Noe, Nov 15 2006

A057713 Smallest prime divisor of Kummer numbers ( = primorials - 1), or 1 if no such prime exists.

Original entry on oeis.org

1, 5, 29, 11, 2309, 30029, 61, 53, 37, 79, 228737, 229, 304250263527209, 141269, 191, 87337, 27600124633, 1193, 163, 260681003321, 313, 163, 139, 23768741896345550770650537601358309, 66683, 2990092035859, 15649, 17515703, 719, 295201, 15098753, 10172884549, 20962699238647, 4871, 673, 311, 1409, 1291, 331, 1450184819, 23497, 711427, 521, 673, 519577, 1372062943, 56543, 811, 182309, 53077, 641, 349, 389
Offset: 1

Views

Author

Labos Elemer, Oct 25 2000

Keywords

Examples

			6th term in the sequence corresponds to 7th primorial = 510510 and 510509 = 61 * 8369, so a(7) = 61.
		

Crossrefs

Programs

  • Mathematica
    Map[If[PrimeQ@ #, #, FactorInteger[#][[1, 1]]] &, FoldList[#1 #2 &, Prime@ Range@ 36] - 1] (* Michael De Vlieger, Feb 18 2017 *)

Formula

a(n) = A020639(A057588(n)). - Amiram Eldar, Feb 13 2020

Extensions

More terms from Klaus Brockhaus, Larry Reeves (larryr(AT)acm.org) and Robert G. Wilson v, Apr 02 2001

A065314 Smallest prime divisor of (n-th primorial - (n+1)-st prime).

Original entry on oeis.org

23, 199, 2297, 30013, 41, 9699667, 2819, 53, 21701, 79, 163, 181, 61, 1619, 14669, 307, 103, 306091, 907, 3217644767340672907899084554047, 267064515689275851355624017992701, 23768741896345550770650537601358213
Offset: 3

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, difference=23, so a(3)=23.
		

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger[Times @@ #1 - #2][[1, 1, 1]] & @@ Reverse@ TakeDrop[#, -1] &, Drop[#, 3] &@ FoldList[Flatten@ Append[{#1}, #2] &, Prime@ Range@ 25]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    a(n) = vecmin(factor(prod(k=1, n, prime(k)) - prime(n+1))[,1]); \\ Michel Marcus, Jul 16 2017

Formula

a(n) = A020639( A002110(n) - A000040(n+1) ).

A065315 Smallest prime divisor of n-th primorial + (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 13, 23, 30047, 510529, 9699713, 127, 107, 433, 1093, 375569, 13082761331670077, 941879, 32589158477190044789, 1922760350154212639131, 4129, 92388407, 5879, 40729680599249024150621323549, 1783, 4903, 10279098043, 191, 131, 109, 163, 337, 20261, 673327, 6599, 181
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, sum=37, so a(3)=37.
		

Crossrefs

Programs

  • PARI
    a(n) = vecmin(factor(prod(i=1, n, prime(i)) + prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A020639(A002110(n) + A000040(n+1)).
a(n) = A020639(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

More terms from Michel Marcus, Aug 29 2019

A065316 Largest prime divisor of n-th primorial - (n+1)-st prime.

Original entry on oeis.org

23, 199, 2297, 30013, 12451, 9699667, 79139, 122069683, 9241993, 77184383, 211941187, 72280449346243, 73629553, 142226610221, 131076443530861861, 382046844818915214929, 1348764323657, 1822793973448088839487, 217379667530071, 3217644767340672907899084554047, 267064515689275851355624017992701
Offset: 3

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, 4th prime=7, difference=23, so a(3)=23.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,pmrl},pmrl=FoldList[Times,Prime[Range[nn]]];FactorInteger[ #][[-1,1]]&/@(Drop[#[[1]]-#[[2]]&/@Thread[ {pmrl,Prime[ Range[ 2,nn+1]]}],2])] (* Harvey P. Dale, Dec 30 2021 *)
  • PARI
    a(n) = vecmax(factor(prod(i=1, n, prime(i)) - prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A006530(A002110(n)-A000040(n+1)).

Extensions

More terms from Michel Marcus, Aug 29 2019

A066735 Primes p dividing 1 + the product of the primes less than p.

Original entry on oeis.org

2, 3, 19, 1471, 3001
Offset: 1

Views

Author

Joseph L. Pe, Jan 15 2002

Keywords

Comments

No further terms up to prime(216816) = 2999999. Is the sequence finite? - Klaus Brockhaus, Jan 17 2002
From Lévai Gábor (gablevai(AT)vipmail.hu), Nov 23 2004: (Start)
Let p(1)=2, p(2)=3, p(3)=5, ... denote the primes and let E(n) = 1 + p(1) * p(2) * ... * p(n). For k >= 1, list the primes p such that p(n+k) | E(n). For k=1 we get this sequence, for k=2 we get A100465.
For k >= 3 the known results are as follows: if k = 3: no solutions for p < 80000000; if k = 4: 463, 2908123 and no others for p < 80000000; if k = 5: 61, 73 and no others for p < 80000000; if k = 6: 21687203 and no others for p < 80000000; if k = 7: 149, 43951591 and no others for p < 80000000; if k = 8: 31, 131 and no others for p < 80000000; if k = 9: 58691999 and no others for p < 80000000. (End)
No further terms up to 80000000. - Lévai Gábor (gablevai(AT)vipmail.hu), Nov 23 2004
a(6) > 179424673 = prime(10^7). - Giovanni Resta, Apr 13 2017
a(6) > 914799232 > prime(46727379). - Max Z. Scialabba, Feb 26 2024

Examples

			1 + Product of the primes < 19 = 1 + 2*3*5*7*11*13*17 = 510511 = 19*26869; so 19 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    p = 2; Do[q = Prime[n]; If[ IntegerQ[(p + 1)/q], Print[q]]; p = p*q, {n, 2, 86120} ]
  • PARI
    a066735(m) =local(k,p); k=1; forprime(p=2,m, if((k+1)%p==0,print1(p,",")); k=k*p)

A065317 Largest prime divisor of the sum of the n-th primorial and the (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 17, 101, 30047, 510529, 9699713, 1427, 76829, 789077, 659863, 810104837, 13082761331670077, 652833094897, 32589158477190044789, 1922760350154212639131, 28406001782370300553, 770555057, 94904036422299534098897, 40729680599249024150621323549
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n = 4, 4th primorial = 210, prime(5) = 11, sum = 210 + 11 = 13 * 17, a(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},FactorInteger[#][[-1,1]]&/@(Total/@Thread[{FoldList[ Times,Prime[Range[nn]]],Prime[Range[nn]+1]}])] (* Harvey P. Dale, Jul 26 2020 *)
  • PARI
    a(n) = vecmax(factor(vecprod(primes(n)) + prime(n+1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A002110(n) + A000040(n+1)).
a(n) = A006530(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

Name clarified by Felix Fröhlich, May 26 2022
Showing 1-10 of 10 results.