A058891
a(n) = 2^(2^(n-1) - 1).
Original entry on oeis.org
1, 2, 8, 128, 32768, 2147483648, 9223372036854775808, 170141183460469231731687303715884105728, 57896044618658097711785492504343953926634992332820282019728792003956564819968
Offset: 1
The 8 possible hyperedge sets for the vertex set {1, 2} are {}, {{1}}, {{2}}, {{1, 2}}, {{1}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}} and {{1}, {2}, {1, 2}}. - _Lorenzo Sauras Altuzarra_, Apr 01 2023
- F. Harary, Graph Theory, Page 209, Problem 16.11.
-
a[1]:=1: for n from 2 to 20 do a[n]:=2*a[n-1]^2 od: seq(a[n], n=1..9); # Zerinvary Lajos, Apr 16 2009
-
a = 1; b = -3; Table[Expand[(-1/2) ((a + Sqrt[b])^(2^n) + (a - Sqrt[b])^(2^n))], {n, 1, 10}] (* Artur Jasinski, Oct 11 2008 *)
-
a(n) = { 2^(2^(n-1)-1) } \\ Harry J. Smith, Jun 23 2009
-
def A058891(n): return 1<<(1<Chai Wah Wu, Dec 12 2022
A295501
a(n) = phi(4^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
2, 8, 36, 128, 600, 1728, 10584, 32768, 139968, 480000, 2640704, 6635520, 44717400, 132765696, 534600000, 2147483648, 11452896600, 26121388032, 183250539864, 473702400000, 2427720325632, 8834232287232, 45914084232320, 109586090557440, 656100000000000
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3), this sequence (k=4),
A295502 (k=5),
A366623 (k=6),
A366635 (k=7),
A366654 (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
A366623
a(n) = phi(6^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
4, 24, 168, 864, 6200, 30240, 223944, 1119744, 7457184, 37200000, 277618528, 1254113280, 10445497920, 51618196224, 365601600000, 1770091315200, 13439285266176, 62336092492800, 484935499902880, 2179146240000000, 17141125020596640, 86330728271779200
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3),
A295501 (k=4),
A295502 (k=5), this sequence (k=6),
A366635 (k=7),
A366654 (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
A366685
a(n) = phi(11^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
4, 32, 432, 3840, 64400, 373248, 7613424, 56217600, 765889344, 6913984000, 114117380608, 599824465920, 13796450740800, 98909341090560, 1356399209088000, 11341872916070400, 202178811399717504, 1171410130065973248, 24463636179365818512, 176391086415667200000
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3),
A295501 (k=4),
A295502 (k=5),
A366623 (k=6),
A366635 (k=7),
A366654 (k=8),
A366663 (k=9),
A295503 (k=10), this sequence (k=11),
A366711 (k=12).
A295502
a(n) = phi(5^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
2, 8, 60, 192, 1400, 4320, 39060, 119808, 894240, 2912000, 24414060, 62208000, 610351560, 1959874560, 13154400000, 44043337728, 380537036928, 997843069440, 9485297382000, 25606963200000, 230106651919200, 748687423334400, 5959800062798400, 15138938880000000
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3),
A295501 (k=4), this sequence (k=5),
A366623 (k=6),
A366635 (k=7),
A366654 (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
A366635
a(n) = phi(7^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
2, 16, 108, 640, 5600, 36288, 264992, 1536000, 12387168, 85120000, 658519752, 3135283200, 32296336800, 216063877120, 1450340640000, 8333819904000, 77537969371008, 488237947481088, 3790563394976072, 19162214400000000, 170264753751665664, 1245495178700551680
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3),
A295501 (k=4),
A295502 (k=5),
A366623 (k=6), this sequence (k=7),
A366654 (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
A366654
a(n) = phi(8^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
6, 36, 432, 1728, 27000, 139968, 1778112, 6635520, 113467392, 534600000, 6963536448, 26121388032, 465193834560, 2427720325632, 28548223200000, 109586090557440, 1910296842179040, 9618417501143040, 123523151337020736, 406467072000000000, 7713001620195508224
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3),
A295501 (k=4),
A295502 (k=5),
A366623 (k=6),
A366635 (k=7), this sequence (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
-
EulerPhi[8^Range[30] - 1]
-
{a(n) = eulerphi(8^n-1)}
-
from sympy import totient
def A366654(n): return totient((1<<3*n)-1) # Chai Wah Wu, Oct 15 2023
A366663
a(n) = phi(9^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
4, 32, 288, 2560, 26400, 165888, 2384928, 15728640, 141087744, 1246080000, 14758128000, 85996339200, 1270928131200, 8810420097024, 70207948800000, 677066362060800, 8218041445152000, 43129128265187328, 674757689572915200, 4238841176064000000
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3),
A295501 (k=4),
A295502 (k=5),
A366623 (k=6),
A366635 (k=7),
A366654 (k=8), this sequence (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
A295500
a(n) = phi(3^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
1, 4, 12, 32, 110, 288, 1092, 2560, 9072, 26400, 84700, 165888, 797160, 2384928, 6019200, 15728640, 64533700, 141087744, 580765248, 1246080000, 4823425152, 14758128000, 46070066188, 85996339200, 385087175000, 1270928131200, 3474144608256, 8810420097024
Offset: 1
phi(k^n-1):
A053287 (k=2), this sequence (k=3),
A295501 (k=4),
A295502 (k=5),
A366623 (k=6),
A366635 (k=7),
A366654 (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
A366711
a(n) = phi(12^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
10, 120, 1560, 13440, 226200, 2021760, 32518360, 274391040, 4534807680, 51953616000, 646094232960, 4662793175040, 97266341877120, 1070382142166400, 13666309113600000, 109897747141754880, 2016918439151095000, 17518491733377024000, 290436363064202660760
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3),
A295501 (k=4),
A295502 (k=5),
A366623 (k=6),
A366635 (k=7),
A366654 (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11), this sequence (k=12).
Showing 1-10 of 20 results.
Comments