cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A058891 a(n) = 2^(2^(n-1) - 1).

Original entry on oeis.org

1, 2, 8, 128, 32768, 2147483648, 9223372036854775808, 170141183460469231731687303715884105728, 57896044618658097711785492504343953926634992332820282019728792003956564819968
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2001

Keywords

Comments

For n > 1, a(n) is the least solution > 1 to rad(x)^(n-1) = tau(x) where rad(x) = A007947(x) is the squarefree kernel of x and tau(x) = A000005(x) the number of divisors of x. - Benoit Cloitre, Apr 18 2002 [Corrected by Michel Marcus, Oct 15 2018]
For n > 1, a(n) is also the total number of possible outcomes of a knockout tournament starting with 2^(n-1) players, taking account of all matches in the tournament. - Martin Griffiths, Mar 26 2009
Also, a(n+1) = 2^(2^n-1) for n >= 1 are solutions x = y of the Diophantine equation x^y * y^x = (x+y)^z in positive integers; corresponding solutions z are in A348332 (see this last sequence for more informations and links). - Bernard Schott, Oct 13 2021
For n > 2, a(n) ends with 8. - Bernard Schott, Oct 20 2021
a(n) is the number of labeled hypergraphs on n - 1 vertices. - Lorenzo Sauras Altuzarra, Apr 01 2023

Examples

			The 8 possible hyperedge sets for the vertex set {1, 2} are {}, {{1}}, {{2}}, {{1, 2}}, {{1}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}} and {{1}, {2}, {1, 2}}. - _Lorenzo Sauras Altuzarra_, Apr 01 2023
		

References

  • F. Harary, Graph Theory, Page 209, Problem 16.11.

Crossrefs

Programs

  • Maple
    a[1]:=1: for n from 2 to 20 do a[n]:=2*a[n-1]^2 od: seq(a[n], n=1..9); # Zerinvary Lajos, Apr 16 2009
  • Mathematica
    a = 1; b = -3; Table[Expand[(-1/2) ((a + Sqrt[b])^(2^n) + (a - Sqrt[b])^(2^n))], {n, 1, 10}] (* Artur Jasinski, Oct 11 2008 *)
  • PARI
    a(n) = { 2^(2^(n-1)-1) } \\ Harry J. Smith, Jun 23 2009
    
  • Python
    def A058891(n): return 1<<(1<Chai Wah Wu, Dec 12 2022

Formula

a(n) = A053287(A000079(n-1)).
a(1) = 1, a(n+1) = 2*a(n)^2.
a(1) = 1, a(n+1) = 2^n*a(1)*a(2)*...*a(n). - Benoit Cloitre, Sep 13 2003
a(n) = (-1/2)*((1 + sqrt(-3))^(2^n) + (1 - sqrt(-3))^(2^n)). - Artur Jasinski, Oct 11 2008
a(n) = 2*a(n-1)^2 is an example with a(1) = 1 and k = 2 of a(n) = k*a(n-1)^2; general explicit formula: a(n) = ((a(1)*k)^(2^(n-1)))/k. - Andreas Pfaffel (andreas.pfaffel(AT)gmx.at), Apr 27 2010
a(n) = A077585(n-1) + 1. - Maurizio De Leo, Feb 25 2015
a(n) = 2^A000225(n-1). - Michel Marcus, Aug 19 2020
Sum_{n>=0} 1/a(n) = A076214. - Amiram Eldar, Oct 27 2020

A295501 a(n) = phi(4^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 8, 36, 128, 600, 1728, 10584, 32768, 139968, 480000, 2640704, 6635520, 44717400, 132765696, 534600000, 2147483648, 11452896600, 26121388032, 183250539864, 473702400000, 2427720325632, 8834232287232, 45914084232320, 109586090557440, 656100000000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), this sequence (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[4^Range[30] - 1] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(4^n-1)}

Formula

a(n) = n*A027695(n).
a(n) = A053287(2*n) = A053285(n) * A053287(n). - Max Alekseyev, Jan 07 2024

A366623 a(n) = phi(6^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 24, 168, 864, 6200, 30240, 223944, 1119744, 7457184, 37200000, 277618528, 1254113280, 10445497920, 51618196224, 365601600000, 1770091315200, 13439285266176, 62336092492800, 484935499902880, 2179146240000000, 17141125020596640, 86330728271779200
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), this sequence (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[6^Range[22] - 1] (* Paul F. Marrero Romero, Oct 23 2023 *)
  • PARI
    {a(n) = eulerphi(6^n-1)}

Formula

a(n) = A000010(A024062(n)). - Paul F. Marrero Romero, Oct 23 2023

A366685 a(n) = phi(11^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 32, 432, 3840, 64400, 373248, 7613424, 56217600, 765889344, 6913984000, 114117380608, 599824465920, 13796450740800, 98909341090560, 1356399209088000, 11341872916070400, 202178811399717504, 1171410130065973248, 24463636179365818512, 176391086415667200000
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), this sequence (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[11^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(11^n-1)}

A295502 a(n) = phi(5^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 8, 60, 192, 1400, 4320, 39060, 119808, 894240, 2912000, 24414060, 62208000, 610351560, 1959874560, 13154400000, 44043337728, 380537036928, 997843069440, 9485297382000, 25606963200000, 230106651919200, 748687423334400, 5959800062798400, 15138938880000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Comments

Faye et al. prove that no term is of the form 5^k-1. - Michel Marcus, Jun 16 2024

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), this sequence (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[5^Range[25] - 1] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    {a(n) = eulerphi(5^n-1)}

Formula

a(n) = n*A027741(n).
a(n) = A000010(A024049(n)). - Michel Marcus, Jun 16 2024

A366635 a(n) = phi(7^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 16, 108, 640, 5600, 36288, 264992, 1536000, 12387168, 85120000, 658519752, 3135283200, 32296336800, 216063877120, 1450340640000, 8333819904000, 77537969371008, 488237947481088, 3790563394976072, 19162214400000000, 170264753751665664, 1245495178700551680
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), this sequence (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[7^Range[30] - 1] (* Wesley Ivan Hurt, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(7^n-1)}

A366654 a(n) = phi(8^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 36, 432, 1728, 27000, 139968, 1778112, 6635520, 113467392, 534600000, 6963536448, 26121388032, 465193834560, 2427720325632, 28548223200000, 109586090557440, 1910296842179040, 9618417501143040, 123523151337020736, 406467072000000000, 7713001620195508224
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), this sequence (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[8^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(8^n-1)}
    
  • Python
    from sympy import totient
    def A366654(n): return totient((1<<3*n)-1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = A053287(3*n). - Max Alekseyev, Jan 09 2024

A366663 a(n) = phi(9^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 32, 288, 2560, 26400, 165888, 2384928, 15728640, 141087744, 1246080000, 14758128000, 85996339200, 1270928131200, 8810420097024, 70207948800000, 677066362060800, 8218041445152000, 43129128265187328, 674757689572915200, 4238841176064000000
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), this sequence (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[9^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(9^n-1)}

Formula

a(n) = A295500(2*n) = 2 * A295500(n) * A366579(n). - Max Alekseyev, Jan 07 2024

A295500 a(n) = phi(3^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 12, 32, 110, 288, 1092, 2560, 9072, 26400, 84700, 165888, 797160, 2384928, 6019200, 15728640, 64533700, 141087744, 580765248, 1246080000, 4823425152, 14758128000, 46070066188, 85996339200, 385087175000, 1270928131200, 3474144608256, 8810420097024
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), this sequence (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[3^Range[30] - 1] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    {a(n) = eulerphi(3^n-1)}

Formula

a(n) = n*A027385(n).
a(n) = A000010(A024023(n)). - Michel Marcus, Jun 18 2024

A366711 a(n) = phi(12^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

10, 120, 1560, 13440, 226200, 2021760, 32518360, 274391040, 4534807680, 51953616000, 646094232960, 4662793175040, 97266341877120, 1070382142166400, 13666309113600000, 109897747141754880, 2016918439151095000, 17518491733377024000, 290436363064202660760
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), this sequence (k=12).

Programs

  • Mathematica
    EulerPhi[12^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(12^n-1)}
Showing 1-10 of 20 results. Next