cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A046692 Dirichlet inverse of sigma function (A000203).

Original entry on oeis.org

1, -3, -4, 2, -6, 12, -8, 0, 3, 18, -12, -8, -14, 24, 24, 0, -18, -9, -20, -12, 32, 36, -24, 0, 5, 42, 0, -16, -30, -72, -32, 0, 48, 54, 48, 6, -38, 60, 56, 0, -42, -96, -44, -24, -18, 72, -48, 0, 7, -15, 72, -28, -54, 0, 72, 0, 80, 90, -60, 48, -62, 96, -24, 0, 84, -144, -68, -36, 96, -144, -72, 0, -74, 114, -20, -40, 96, -168
Offset: 1

Views

Author

Andrew R. Feist (arf22540(AT)cmsu2.cmsu.edu)

Keywords

Examples

			a(36) = a(2^2*3^2) = 2*3 = 6.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.
  • Andrew R. Feist, Fun With the Sigma-Function, unpub.

Crossrefs

Programs

  • Maple
    t := 1; a := proc(n,t) local t1,d; t1 := 0; for d from 1 to n do if n mod d = 0 then t1 := t1+d^t*mobius(d)*mobius(n/d); fi; od; t1; end;
  • Mathematica
    a[n_] := (k = 0; Do[If[Mod[n, d] == 0, k = k + d*MoebiusMu[d]*MoebiusMu[n/d]], {d, 1, n}]; k); Table[a[n], {n, 1, 78}](* Jean-François Alcover, Oct 13 2011, after Maple *)
    f[p_, e_] := Which[e == 1, -p-1, e == 2, p, e >= 3, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,(1-X)*(1-p*X))[n]) /* Ralf Stephan */
    
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sigma(n)))} \\ Andrew Howroyd, Aug 05 2018

Formula

a(p) = -p-1, a(p^2) = p, a(p^k) = 0 for k > 2.
Dirichlet g.f.: 1/(zeta(s)*zeta(s-1)). - Benedict W. J. Irwin, Jul 10 2018
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} sigma(k)*A(x^k). - Ilya Gutkovskiy, May 11 2019
From Peter Bala, Jan 17 2024: (Start)
a(n) = Sum_{d divides n} d*mu(d)*mu(n/d). See Brown, p. 408.
a(n) = - Sum_{d divides n, d < n} a(d)*sigma_1(n/d).
a(n) = Sum_{d divides n} d*a(d)*J_2(n/d), where the Jordan totient function J_2(n) = A007434(n).
a(n) = Sum_{d divides n} d*A007427(d)*phi(n/d), where A007427 is the Dirichlet inverse of the tau function.
More generally, a(n) = Sum_{d divides n} d*sigma_[r]^(-1)(d)*J_(r+1)(n/d), where sigma_[r]^(-1) denotes the Dirichlet inverse of the function sigma_[r] = Sum_{d divides n} d^r.
a(n) = Sum_{k = 1..n} gcd(k, n)*A007427(gcd(k, n)).
a(n) = Sum_{1 <= j, k <= n} gcd(j, k, n)*a(gcd(j, k, n)). (End)
Sum_{k=1..n} abs(a(k)) ~ 45*n^2/Pi^4. - Vaclav Kotesovec, May 30 2024

Extensions

Corrected by T. D. Noe, Nov 13 2006

A101035 Dirichlet inverse of the gcd-sum function (A018804).

Original entry on oeis.org

1, -3, -5, 1, -9, 15, -13, 1, 4, 27, -21, -5, -25, 39, 45, 1, -33, -12, -37, -9, 65, 63, -45, -5, 16, 75, 4, -13, -57, -135, -61, 1, 105, 99, 117, 4, -73, 111, 125, -9, -81, -195, -85, -21, -36, 135, -93, -5, 36, -48, 165, -25, -105, -12, 189, -13, 185, 171, -117, 45, -121, 183, -52, 1, 225, -315, -133, -33, 225, -351, -141, 4
Offset: 1

Views

Author

Gerard P. Michon, Nov 27 2004

Keywords

Examples

			a(4)=1, a(8)=1, a(16)=1, a(32)=1, etc. because of the multiplicative definition for powers of 2.
		

Crossrefs

Programs

  • Haskell
    a101035 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p 1 = 1 - 2 * p
       f p e = (p - 1) ^ 2
    -- Reinhard Zumkeller, Jul 16 2012
    
  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[ f[n/d]*DirichletInverse[f][d], {d, Most[ Divisors[n]]}]; GCDSum[n_] := Sum[ GCD[n, k], {k, 1, n}]; Table[ DirichletInverse[ GCDSum][n], {n, 1, 72}](* Jean-François Alcover, Dec 12 2011 *)
    f[p_, e_] := If[e == 1, 1 - 2*p, (p - 1)^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 06 2022 *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv(n, d, n*eulerphi(d)/d)))} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X)^2/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021

Formula

Multiplicative function with a(p)=1-2p and a(p^e)=(p-1)^2 when e>1 [p prime].
Dirichlet g.f.: zeta(s)/zeta^2(s-1). - R. J. Mathar, Apr 10 2011
a(n) = Sum{d|n} tau_{-2}(d)*d, where tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 19 2013
Conjecture: Logarithmic g.f. Sum_{n>0,k>0} mu(n)*mu(k)*log(1/(1-x^(n*k))). - Benedict W. J. Irwin, Jul 26 2017

A053825 Dirichlet inverse of sigma_3 function (A001158).

Original entry on oeis.org

1, -9, -28, 8, -126, 252, -344, 0, 27, 1134, -1332, -224, -2198, 3096, 3528, 0, -4914, -243, -6860, -1008, 9632, 11988, -12168, 0, 125, 19782, 0, -2752, -24390, -31752, -29792, 0, 37296, 44226, 43344, 216, -50654, 61740, 61544, 0, -68922, -86688
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2000

Keywords

Comments

sigma_3(n) is the sum of the cubes of the divisors of n (A001158).

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.

Crossrefs

Programs

  • Maple
    with(numtheory):seq(add( mobius(n/d)*mobius(d)*d^3, d in divisors(n)), n = 1..100); # Peter Bala, Jan 26 2024
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d] MoebiusMu[d] d^3, {d, Divisors[n]}];
    Array[a, 42] (* Jean-François Alcover, Aug 16 2019, after Ilya Gutkovskiy *)
    f[p_, e_] := If[e == 1, -p^3 - 1, If[e == 2, p^3, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sigma(n, 3)))} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^3*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020

Formula

Dirichlet g.f.: 1/(zeta(s)*zeta(s-3))
Multiplicative with a(p^1) = -1-p^3, a(p^2) = p^3, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^3. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 17 2024: (Start)
a(n) = Sum_{d divides n} d * A053822(d) * phi(n/d), where the totient function phi(n) = A000010(n).
a(n) = Sum_{d divides n} d^2 * (sigma_1(d))^(-1) * J_2(n/d) and
a(n) = Sum_{d divides n} d^3 * (sigma_k(d))^(-1) * J_(k+3)(n/d), where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)

A053822 Dirichlet inverse of sigma_2 function (A001157).

Original entry on oeis.org

1, -5, -10, 4, -26, 50, -50, 0, 9, 130, -122, -40, -170, 250, 260, 0, -290, -45, -362, -104, 500, 610, -530, 0, 25, 850, 0, -200, -842, -1300, -962, 0, 1220, 1450, 1300, 36, -1370, 1810, 1700, 0, -1682, -2500, -1850, -488, -234, 2650, -2210, 0, 49, -125, 2900, -680
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2000

Keywords

Comments

sigma_2(n) is the sum of the squares of the divisors of n (A001157).

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.

Crossrefs

Dirichlet inverse of sigma_k(n): A007427 (k = 0), A046692 (k = 1), A053825 (k = 3), A053826 (k = 4), A178448 (k = 5).
Cf. A001157,.

Programs

  • Maple
    f1:= proc(p,e) if e = 1 then -1-p^2 elif e=2 then p^2 else 0 fi end proc:
    f:= n -> mul(f1(t[1],t[2]),t=ifactors(n)[2]);
    map(f, [$1..100]); # Robert Israel, Jan 29 2018
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d] MoebiusMu[d] d^2, {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Mar 05 2019, after Ilya Gutkovskiy *)
    f[p_, e_] := If[e == 1, -p^2 - 1, If[e == 2, p^2, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sigma(n, 2)))} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020

Formula

Dirichlet g.f.: 1/(zeta(s)*zeta(s-2)).
Multiplicative with a(p^1) = -1-p^2, a(p^2) = p^2, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^2. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 26 2024: (Start)
a(n) = Sum_{d divides n} d * (sigma(d))^(-1) * phi(n/d), where (sigma(n))^(-1) = A046692(n) denotes the Dirichlet inverse of sigma(n) = A000203(n).
a(n) = Sum_{d divides n} d^2 * (sigma_k(d))^(-1) * J_(k+2)(n/d) for k >= 0, where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)

A178448 Dirichlet inverse of A001160, sigma_5.

Original entry on oeis.org

1, -33, -244, 32, -3126, 8052, -16808, 0, 243, 103158, -161052, -7808, -371294, 554664, 762744, 0, -1419858, -8019, -2476100, -100032, 4101152, 5314716, -6436344, 0, 3125, 12252702, 0, -537856, -20511150, -25170552, -28629152, 0, 39296688, 46855314, 52541808
Offset: 1

Views

Author

R. J. Mathar, Dec 22 2010

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -Sum[ DivisorSigma[5, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Jun 24 2013 *)
    f[p_, e_] := If[e == 1, -p^5 - 1, If[e == 2, p^5, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    A178448_vec(len)={
            a063524=vector(len) ; a063524[1] = 1 ;
            a001160=direuler(p=2,len, 1/(1-p^5*X)/(1-X)) ;
            dirdiv(a063524,a001160) ;}
    { A178448_vec(70) } /* R. J. Mathar, Mar 10 2011 */
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*d^5); \\ Michel Marcus, Nov 06 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^5*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020

Formula

Dirichlet g.f.: 1/(zeta(s)*zeta(s-5)). - R. J. Mathar, Mar 10 2011
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^5. - Ilya Gutkovskiy, Nov 06 2018
Multiplicative with a(p) = -1 - p^5, a(p^2) = p^5, and a(p^e) = 0 for e>=3. - Amiram Eldar, Sep 16 2020

Extensions

More terms from Amiram Eldar, Sep 16 2020

A334660 Dirichlet g.f.: 1 / zeta(s-4).

Original entry on oeis.org

1, -16, -81, 0, -625, 1296, -2401, 0, 0, 10000, -14641, 0, -28561, 38416, 50625, 0, -83521, 0, -130321, 0, 194481, 234256, -279841, 0, 0, 456976, 0, 0, -707281, -810000, -923521, 0, 1185921, 1336336, 1500625, 0, -1874161, 2085136, 2313441, 0, -2825761, -3111696, -3418801, 0, 0, 4477456
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2020

Keywords

Comments

Dirichlet inverse of A000583.
Moebius transform of A189922.
Inverse Moebius transform of A053826.

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n] n^4, {n, 46}]

Formula

G.f. A(x) satisfies: A(x) = x - 2^4 * A(x^2) - 3^4 * A(x^3) - 4^4 * A(x^4) - ...
a(1) = 1; a(n) = -n^4 * Sum_{d|n, d < n} a(d) / d^4.
a(n) = mu(n) * n^4.
Multiplicative with a(p^e) = -p^4 if e = 1 and 0 otherwise. - Amiram Eldar, Dec 05 2022

A120630 Dirichlet inverse of A002654.

Original entry on oeis.org

1, -1, 0, 0, -2, 0, 0, 0, -1, 2, 0, 0, -2, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, -1, -1, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Gerard P. Michon, Jun 25 2006

Keywords

Examples

			a(65)=4 because 65 is 5 times 13 and both of those primes are congruent to 1 modulo 4. Doubling an odd index yields the opposite of the value (e.g., a(130)=-4) because a(2)=-1. Doubling an even index yields zero.
		

Crossrefs

Programs

  • Maple
    A120630 := proc(n)
        local a,pp;
        if n = 1 then
            1;
        else
            a := 1 ;
            for pp in ifactors(n)[2] do
                if op(2,pp) > 2 then
                    a := 0;
                elif op(1,pp) = 2 then
                    if op(2,pp) = 1 then
                        a := -a ;
                    else
                        a := 0 ;
                    end if;
                elif modp(op(1,pp),4) = 3 then
                    if op(2,pp) = 1 then
                        a := 0 ;
                    else
                        a := -a ;
                    end if;
                else
                    if op(2,pp) = 1 then
                        a := -2*a ;
                    else
                        ;
                    end if;
                end if;
            end do:
            a;
        end if;
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    A120630[n_] := Module[{a, pp}, If[n == 1, 1, a = 1; Do[Which[pp[[2]] > 2, a = 0, pp[[1]] == 2, If[pp[[2]] == 1, a = -a, a = 0], Mod[pp[[1]], 4] == 3, If[pp[[2]] == 1, a = 0, a = -a], True, If[pp[[2]] == 1, a = -2*a]], {pp, FactorInteger[n]}]; a]]; Array[A120630, 120] (* Jean-François Alcover, Apr 24 2017, after R. J. Mathar *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv( n, d, (d%4==1) - (d%4==3))))} \\ Andrew Howroyd, Aug 05 2018

Formula

Multiplicative function with a(p^e)=0 if e>2. a(2)=-1, a(4)=0. If p is a prime congruent to 3 modulo 4, then a(p)=0 and a(p^2)=-1. If p is a prime congruent to 1 modulo 4, then a(p)=-2 and a(p^2)=1.
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 3/(2*Pi*G) = 0.521269..., and G is Catalan's constant (A006752). - Amiram Eldar, Jan 22 2024

A347227 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{d|n} mu(d)*mu(n/d)*d^k.

Original entry on oeis.org

1, 1, -2, 1, -3, -2, 1, -5, -4, 1, 1, -9, -10, 2, -2, 1, -17, -28, 4, -6, 4, 1, -33, -82, 8, -26, 12, -2, 1, -65, -244, 16, -126, 50, -8, 0, 1, -129, -730, 32, -626, 252, -50, 0, 1, 1, -257, -2188, 64, -3126, 1394, -344, 0, 3, 4, 1, -513, -6562, 128, -15626, 8052, -2402, 0, 9, 18, -2
Offset: 1

Views

Author

Seiichi Manyama, Aug 24 2021

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,    1,     1, ...
  -2, -3,  -5,   -9,  -17,   -33, ...
  -2, -4, -10,  -28,  -82,  -244, ...
   1,  2,   4,    8,   16,    32, ...
  -2, -6, -26, -126, -626, -3126, ...
   4, 12,  50,  252, 1394,  8052, ...
		

Crossrefs

Columns k=0..5 give A007427, A046692, A053822, A053825, A053826, A178448.
T(n,n) gives A347251.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, MoebiusMu[#] * MoebiusMu[n/#] * #^k &]; Table[T[n - k + 1, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    T(n, k) = sumdiv(n, d, moebius(d)*moebius(n/d)*d^k);

Formula

Dirichlet g.f. of column k: 1/(zeta(s)*zeta(s-k)).
Showing 1-8 of 8 results.