cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A324340 a(n) = A046692(A005940(1+n)), where A005940 is the Doudna sequence and A046692 is the Dirichlet inverse of sigma function.

Original entry on oeis.org

1, -3, -4, 2, -6, 12, 3, 0, -8, 18, 24, -8, 5, -9, 0, 0, -12, 24, 32, -12, 48, -72, -18, 0, 7, -15, -20, 6, 0, 0, 0, 0, -14, 36, 48, -16, 72, -96, -24, 0, 96, -144, -192, 48, -40, 54, 0, 0, 11, -21, -28, 10, -42, 60, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, 42, 56, -24, 84, -144, -36, 0, 112, -216, -288, 64, -60, 72, 0, 0, 168, -288, -384, 96, -576, 576, 144, 0
Offset: 0

Views

Author

Antti Karttunen, Feb 24 2019

Keywords

Crossrefs

Programs

  • PARI
    A324340(n) = { my(m1=1, p=2); while(n, if(!(n%2), p=nextprime(1+p); n>>=1, if(1==(n%4), m1 *= -(1+p), if(3==(n%8), m1 *= p, return(0))); while((n%2),n>>=1))); (m1); };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A324340(n) = A046692(A005940(1+n));

Formula

a(n) = A046692(A005940(1+n)).

A323403 Sum of sigma and its Dirichlet inverse: a(n) = A000203(n) + A046692(n).

Original entry on oeis.org

2, 0, 0, 9, 0, 24, 0, 15, 16, 36, 0, 20, 0, 48, 48, 31, 0, 30, 0, 30, 64, 72, 0, 60, 36, 84, 40, 40, 0, 0, 0, 63, 96, 108, 96, 97, 0, 120, 112, 90, 0, 0, 0, 60, 60, 144, 0, 124, 64, 78, 144, 70, 0, 120, 144, 120, 160, 180, 0, 216, 0, 192, 80, 127, 168, 0, 0, 90, 192, 0, 0, 195, 0, 228, 104, 100, 192, 0, 0, 186, 121, 252, 0, 288, 216, 264, 240, 180, 0, 288
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    v046692 = DirInverse(vector(up_to,n,sigma(n)));
    A046692(n) = v046692[n];
    A323403(n) = (sigma(n)+A046692(n));

Formula

a(n) = A000203(n) + A046692(n).

A378606 Dirichlet convolution of A046692 and A003961, where A046692 is the Dirichlet inverse of sigma, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 3, 6, 8, 0, 1, 2, 3, 0, 1, 18, 1, 0, 3, 2, 3, 0, 5, 6, 12, 0, 40, 6, 1, 0, 5, 54, 1, 0, 3, 16, 3, 0, 3, 6, 1, 0, 3, 2, 8, 0, 5, 18, 40, 0, 1, 6, 5, 0, 1, 18, 3, 0, 1, 2, 5, 0, 24, 162, 3, 0, 3, 2, 5, 0, 1, 48, 5, 0, 12, 6, 3, 0, 3, 18, 200, 0, 5, 6, 1, 0, 1, 6, 7, 0, 9, 10, 5, 0, 3, 54, 3, 0, 8, 24
Offset: 1

Views

Author

Antti Karttunen, Dec 11 2024

Keywords

Crossrefs

Cf. A003961, A008683, A016825 (positions of 0's), A046692, A151800, A349387 (inverse Möbius transform), A378607 (Dirichlet inverse).

Programs

  • Mathematica
    f[p_, e_] := Module[{q = NextPrime[p]}, If[e == 1, q - p - 1, q^e - (p + 1)*q^(e - 1) + p*q^(e - 2)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 11 2024 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A378606(n) = sumdiv(n,d,A046692(d)*A003961(n/d));

Formula

a(n) = Sum_{d|n} A046692(d)*A003961(n/d).
a(n) = Sum_{d|n} A008683(d)*A349387(n/d).
Multiplicative with a(p^e) = q(p)^e - (p+1) * q(p)^(e-1) + p * q(p)^(e-2) if e >= 2, and q(p) - p - 1 if e = 1, where q(p) = A151800(p) is the prime next to p. - Amiram Eldar, Dec 11 2024

A378756 Dirichlet convolution of A046692 and A005187, where A046692 is the Dirichlet inverse of sigma.

Original entry on oeis.org

1, 0, 0, 0, 2, -2, 3, 0, 3, -6, 7, 0, 9, -8, -6, 0, 14, -6, 15, 0, -5, -16, 18, 0, 4, -20, -2, 0, 24, 14, 25, 0, -12, -30, -15, 0, 33, -32, -18, 0, 37, 12, 38, 0, -12, -38, 41, 0, 14, -8, -30, 0, 48, 4, -33, 0, -30, -50, 53, 0, 55, -52, -27, 0, -38, 26, 63, 0, -33, 32, 66, 0, 69, -68, -6, 0, -38, 38, 73, 0, 7, -76, 78
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Crossrefs

Cf. A005187, A046692, A378757 (Dirichlet inverse).
Cf. also A294898.

Programs

  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A378756(n) = sumdiv(n,d,A046692(d)*A005187(n/d));

Formula

a(n) = Sum_{d|n} A046692(d)*A005187(n/d).

A379109 Dirichlet convolution of A046692 (inverse of sigma) with A336923, where A336923(n) = 1 if sigma(2n) - sigma(n) is a power of 2, otherwise 0.

Original entry on oeis.org

1, -2, -3, 0, -6, 6, -7, 0, -1, 12, -12, 0, -14, 14, 18, 0, -18, 2, -20, 0, 21, 24, -24, 0, 5, 28, 3, 0, -30, -36, -31, 0, 36, 36, 42, 0, -38, 40, 42, 0, -42, -42, -44, 0, 6, 48, -48, 0, -1, -10, 54, 0, -54, -6, 72, 0, 60, 60, -60, 0, -62, 62, 7, 0, 84, -72, -68, 0, 72, -84, -72, 0, -74, 76, -15, 0, 84, -84, -80, 0, 0, 84
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2024

Keywords

Crossrefs

Cf. A000203, A000668, A046692, A054784, A336923, A379108 (Dirichlet inverse).

Programs

  • Mathematica
    f[p_, e_] := If[2^IntegerExponent[p + 1, 2] == p + 1, Which[e == 1, -p, e == 2, -1, e == 3, p, e > 3, 0], Which[e == 1, -p - 1, e == 2, p, e > 2, 0]]; f[2, e_] := If[e == 1, -2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 03 2025 *)
  • PARI
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A209229(n) = (n && !bitand(n,n-1));
    A336923(n) = A209229(sigma(n+n)-sigma(n));
    A379109(n) = sumdiv(n,d,A046692(d)*A336923(n/d));

Formula

a(n) = Sum_{d|n} A046692(d)*A336923(n/d).
Multiplicative with a(2^e) = -2 if e = 1 and 0 otherwise, and for an odd prime p, if p is a Mersenne prime, a(p) = -p, a(p^2) = -1, a(p^3) = p, and a(p^e) = 0 for e >= 4, and otherwise a(p) = -(p+1), a(p^2) = p and a(p^e) = 0 for e >= 3. - Amiram Eldar, Jan 03 2025

A008578 Prime numbers at the beginning of the 20th century (today 1 is no longer regarded as a prime).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Keywords

Comments

1 together with the primes; also called the noncomposite numbers.
Also largest sequence of nonnegative integers with the property that the product of 2 or more elements with different indices is never a square. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001 [Comment corrected by Farideh Firoozbakht, Aug 03 2014]
Numbers k whose largest divisor <= sqrt(k) equals 1. (See also A161344, A161345, A161424.) - Omar E. Pol, Jul 05 2009
Numbers k such that d(k) <= 2. - Juri-Stepan Gerasimov, Oct 17 2009
Also first column of array in A163280. Also first row of array in A163990. - Omar E. Pol, Oct 24 2009
Possible values of A136548(m) in increasing order, where A136548(m) = the largest numbers h such that A000203(h) <= k (k = 1,2,3,...), where A000203(h) = sum of divisors of h. - Jaroslav Krizek, Mar 01 2010
Where record values of A022404 occur: A086332(n)=A022404(a(n)). - Reinhard Zumkeller, Jun 21 2010
Positive integers that have no divisors other than 1 and itself (the old definition of prime numbers). - Omar E. Pol, Aug 10 2012
Conjecture: the sequence contains exactly those k such that sigma(k) > k*BigOmega(k). - Irina Gerasimova, Jun 08 2013
Note on the Gerasimova conjecture: all terms in the sequence obviously satisfy the inequality, because sigma(p) = 1+p and BigOmega(p) = 1 for primes p, so 1+p > p*1. For composites, the (opposite) inequality is heuristically correct at least up to k <= 4400000. The general proof requires to show that BigOmega(k) is an upper limit of the abundancy sigma(k)/k for composite k. This proof is easy for semiprimes k=p1*p2 in general, where sigma(k)=1+p1+p2+p1*p2 and BigOmega(k)=2 and p1, p2 <= 2. - R. J. Mathar, Jun 12 2013
Numbers k such that phi(k) + sigma(k) = 2k. - Farideh Firoozbakht, Aug 03 2014
isA008578(n) <=> k is prime to n for all k in {1,2,...,n-1}. - Peter Luschny, Jun 05 2017
In 1751 Leonhard Euler wrote: "Having so established this sign S to indicate the sum of the divisors of the number in front of which it is placed, it is clear that, if p indicates a prime number, the value of Sp will be 1 + p, except for the case where p = 1, because then we have S1 = 1, and not S1 = 1 + 1. From this we see that we must exclude unity from the sequence of prime numbers, so that unity, being the start of whole numbers, it is neither prime nor composite." - Omar E. Pol, Oct 12 2021
a(1) = 1; for n >= 2, a(n) is the least unused number that is coprime to all previous terms. - Jianing Song, May 28 2022
A number p is preprime if p = a*b ==> a = 1 or b = 1. This sequence lists the preprimes in the commutative monoid IN \ {0}. - Peter Luschny, Aug 26 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 84 at pp. 214-217.
  • G. Chrystal, Algebra: An Elementary Textbook. Chelsea Publishing Company, 7th edition, (1964), chap. III.7, p. 38.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 11.
  • H. D. Huskey, Derrick Henry Lehmer [1905-1991]. IEEE Ann. Hist. Comput. 17 (1995), no. 2, 64-68. Math. Rev. 96b:01035
  • D. H. Lehmer, The sieve problem for all-purpose computers. Math. Tables and Other Aids to Computation, Math. Tables and Other Aids to Computation, 7, (1953). 6-14. Math. Rev. 14:691e
  • D. N. Lehmer, "List of Prime Numbers from 1 to 10,006,721", Carnegie Institute, Washington, D.C. 1909.
  • R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082
  • H. C. Williams and J. O. Shallit, Factoring integers before computers. Mathematics of Computation 1943-1993: a half-century of computational mathematics (Vancouver, BC, 1993), 481-531, Proc. Sympos. Appl. Math., 48, AMS, Providence, RI, 1994. Math. Rev. 95m:11143

Crossrefs

The main entry for this sequence is A000040.
The complement of A002808.
Cf. A000732 (boustrophedon transform).
Cf. A023626 (self-convolution).

Programs

  • GAP
    A008578:=Concatenation([1],Filtered([1..10^5],IsPrime)); # Muniru A Asiru, Sep 07 2017
  • Haskell
    a008578 n = a008578_list !! (n-1)
    a008578_list = 1 : a000040_list
    -- Reinhard Zumkeller, Nov 09 2011
    
  • Magma
    [1] cat [n: n in PrimesUpTo(271)];  // Bruno Berselli, Mar 05 2011
    
  • Maple
    A008578 := n->if n=1 then 1 else ithprime(n-1); fi :
  • Mathematica
    Join[ {1}, Table[ Prime[n], {n, 1, 60} ] ]
    NestList[ NextPrime, 1, 57] (* Robert G. Wilson v, Jul 21 2015 *)
    oldPrimeQ[n_] := AllTrue[Range[n-1], CoprimeQ[#, n]&];
    Select[Range[271], oldPrimeQ] (* Jean-François Alcover, Jun 07 2017, after Peter Luschny *)
  • PARI
    is(n)=isprime(n)||n==1
    
  • Sage
    isA008578 = lambda n: all(gcd(k, n) == 1 for k in (1..n-1))
    print([n for n in (1..271) if isA008578(n)]) # Peter Luschny, Jun 07 2017
    

Formula

a(n) = A000040(n-1).
m is in the sequence iff sigma(m) + phi(m) = A065387(m) = 2m. - Farideh Firoozbakht, Jan 27 2005
a(n) = A158611(n+1) for n >= 1. - Jaroslav Krizek, Jun 19 2009
In the following formulas (based on emails from Jaroslav Krizek and R. J. Mathar), the star denotes a Dirichlet convolution between two sequences, and "This" is A008578.
This = A030014 * A008683. (Dirichlet convolution using offset 1 with A030014)
This = A030013 * A000012. (Dirichlet convolution using offset 1 with A030013)
This = A034773 * A007427. (Dirichlet convolution)
This = A034760 * A023900. (Dirichlet convolution)
This = A034762 * A046692. (Dirichlet convolution)
This * A000012 = A030014. (Dirichlet convolution using offset 1 with A030014)
This * A008683 = A030013. (Dirichlet convolution using offset 1 with A030013)
This * A000005 = A034773. (Dirichlet convolution)
This * A000010 = A034760. (Dirichlet convolution)
This * A000203 = A034762. (Dirichlet convolution)
A002033(a(n))=1. - Juri-Stepan Gerasimov, Sep 27 2009
a(n) = A181363((2*n-1)*2^k), k >= 0. - Reinhard Zumkeller, Oct 16 2010
a(n) = A001747(n)/2. - Omar E. Pol, Jan 30 2012
A060448(a(n)) = 1. - Reinhard Zumkeller, Apr 05 2012
A086971(a(n)) = 0. - Reinhard Zumkeller, Dec 14 2012
Sum_{n>=1} x^a(n) = (Sum_{n>=1} (A002815(n)*x^n))*(1-x)^2. - L. Edson Jeffery, Nov 25 2013

A002618 a(n) = n*phi(n).

Original entry on oeis.org

1, 2, 6, 8, 20, 12, 42, 32, 54, 40, 110, 48, 156, 84, 120, 128, 272, 108, 342, 160, 252, 220, 506, 192, 500, 312, 486, 336, 812, 240, 930, 512, 660, 544, 840, 432, 1332, 684, 936, 640, 1640, 504, 1806, 880, 1080, 1012, 2162, 768, 2058, 1000
Offset: 1

Views

Author

Keywords

Comments

Also Euler phi function of n^2.
For n >= 3, a(n) is also the size of the automorphism group of the dihedral group of order 2n. This automorphism group is isomorphic to the group of transformations x -> ax + b, where a, b and x are integers modulo n and a is coprime to n. Its order is n*phi(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 18 2001
Order of metacyclic group of polynomial of degree n. - Artur Jasinski, Jan 22 2008
It appears that this sequence gives the number of permutations of 1, 2, 3, ..., n that are arithmetic progressions modulo n. - John W. Layman, Aug 27 2008
The conjecture by Layman is correct. Obviously any such permutation must have an increment that is prime to n, and almost as obvious that any such increment will work, with any starting value; hence phi(n) * n total. - Franklin T. Adams-Watters, Jun 09 2009
Consider the numbers from 1 to n^2 written line by line as an n X n square: a(n) = number of numbers that are coprime to all their horizontal and vertical immediate neighbors. - Reinhard Zumkeller, Apr 12 2011
n -> a(n) is injective: a(m) = a(n) implies m = n. - Franz Vrabec, Dec 12 2012 (See Mathematics Stack Exchange link for a proof.)
a(p) = p*(p-1) a pronic number, see A036689 and A002378. - Fred Daniel Kline, Mar 30 2015
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
From Jianing Song, Aug 25 2023: (Start)
a(n) is the order of the holomorph (see the Wikipedia link) of the cyclic group of order n. Note that Hol(C_n) and Aut(D_{2n}) are isomorphic unless n = 2, where D_{2n} is the dihedral group of order 2*n. See the Wordpress link.
The odd-indexed terms form a subsequence of A341298: the holomorph of an abelian group of odd order is a complete group. See Theorem 3.2, Page 618 of the W. Peremans link. (End)

Examples

			a(4) = 8 since phi(4) = 2 and 4 * 2 = 8.
a(5) = 20 since phi(5) = 4 and 5 * 4 = 20.
		

References

  • Peter Giblin, Primes and Programming: An Introduction to Number Theory with Computing. Cambridge: Cambridge University Press (1993) p. 116, Exercise 1.10.
  • J. L. Lagrange, Oeuvres, Vol. III Paris 1869.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of A047916.
Cf. A002619, A011755 (partial sums), A047918, A000010, A053650, A053191, A053192, A036689, A058161, A009262, A082473 (same terms, sorted into ascending order), A256545, A327172 (a left inverse), A327173, A065484.
Subsequence of A323333.

Programs

Formula

Multiplicative with a(p^e) = (p-1)*p^(2e-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s-2)/zeta(s-1). - R. J. Mathar, Feb 09 2011
a(n) = A173557(n) * A102631(n). - R. J. Mathar, Mar 30 2011
From Wolfdieter Lang, May 12 2011: (Start)
a(n)/2 = A023896(n), n >= 2.
a(n)/2 = (1/n) * Sum_{k=1..n-1, gcd(k,n)=1} k, n >= 2 (see A023896 and A076512/A109395). (End)
a(n) = lcm(phi(n^2),n). - Enrique Pérez Herrero, May 11 2012
a(n) = phi(n^2). - Wesley Ivan Hurt, Jun 16 2013
a(n) = A009195(n) * A009262(n). - Michel Marcus, Oct 24 2013
G.f.: -x + 2*Sum_{k>=1} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Jan 03 2017
a(n) = A082473(A327173(n)), A327172(a(n)) = n. -- Antti Karttunen, Sep 29 2019
Sum_{n>=1} 1/a(n) = 2.203856... (A065484). - Amiram Eldar, Sep 30 2019
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ c*sqrt(x) for c = Product_{p prime} (1 + 1/(p*(p - 1 + sqrt(p^2 - p)))) = 1.3651304521525857... - Charles R Greathouse IV, Mar 16 2022
a(n) = Sum_{d divides n} A001157(d)*A046692(n/d); that is, the Dirichlet convolution of sigma_2(n) and the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024

Extensions

Better description from Labos Elemer, Feb 18 2000

A062503 Squarefree numbers squared.

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 676, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900, 5041, 5329, 5476
Offset: 1

Views

Author

Jason Earls, Jul 09 2001

Keywords

Comments

Also, except for the initial term, numbers whose prime factors are squared. - Cino Hilliard, Jan 25 2006
Also cubefree numbers that are squares. - Gionata Neri, May 08 2016
All positive integers have a unique factorization into powers of squarefree numbers with distinct exponents that are powers of two. So every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (term of this sequence), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on. - Peter Munn, Mar 12 2020
Powerful numbers (A001694) all of whose nonunitary divisors are not powerful (A052485). - Amiram Eldar, May 13 2023

Crossrefs

Characteristic function is A227291.
Other powers of squarefree numbers: A005117(1), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7), A072774(all).
Cf. A001248 (a subsequence).
A329332 column 2 in ascending order.

Programs

  • Haskell
    a062503 = a000290 . a005117  -- Reinhard Zumkeller, Jul 07 2013
    
  • Mathematica
    Select[Range[100], SquareFreeQ]^2
  • PARI
    je=[]; for(n=1,200, if(issquarefree(n),je=concat(je,n^2),)); je
    
  • PARI
    n=0; for (m=1, 10^5, if(issquarefree(m), write("b062503.txt", n++, " ", m^2); if (n==1000, break))) \\ Harry J. Smith, Aug 08 2009
    
  • PARI
    is(n)=issquare(n,&n) && issquarefree(n) \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A062503(n):
        def f(x): return n-1+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**2 # Chai Wah Wu, Aug 19 2024

Formula

Numbers k such that Sum_{d|k} mu(d)*mu(k/d) = 1. - Benoit Cloitre, Mar 03 2004
a(n) = A000290(A005117(n)); A227291(a(n)) = 1. - Reinhard Zumkeller, Jul 07 2013
A000290 \ A062320. - R. J. Mathar, Jul 27 2013
a(n) ~ (Pi^4/36) * n^2. - Charles R Greathouse IV, Nov 24 2015
a(n) = A046692(a(n))^2. - Torlach Rush, Jan 05 2019
For all k in the sequence, Omega(k) = 2*omega(k). - Wesley Ivan Hurt, Apr 30 2020
Sum_{n>=1} 1/a(n) = zeta(2)/zeta(4) = 15/Pi^2 (A082020). - Amiram Eldar, May 22 2020

A323910 Dirichlet inverse of the deficiency of n, A033879.

Original entry on oeis.org

1, -1, -2, 0, -4, 4, -6, 0, -1, 6, -10, 2, -12, 8, 10, 0, -16, 1, -18, 2, 14, 12, -22, 4, -3, 14, -2, 2, -28, -16, -30, 0, 22, 18, 26, 4, -36, 20, 26, 4, -40, -24, -42, 2, 4, 24, -46, 8, -5, -1, 34, 2, -52, 0, 42, 4, 38, 30, -58, 2, -60, 32, 6, 0, 50, -40, -66, 2, 46, -40, -70, 12, -72, 38, 2, 2, 62, -48, -78, 8, -4, 42, -82, -2, 66, 44, 58, 4, -88, 2, 74, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Cf. A033879, A323911, A323912, A359549 (parity of terms).
Sequences that appear in the convolution formulas: A002033, A008683, A023900, A055615, A046692, A067824, A074206, A174725, A191161, A327960, A328722, A330575, A345182, A349341, A346246, A349387.

Programs

  • Mathematica
    b[n_] := 2 n - DivisorSigma[1, n];
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n));
    v323910 = DirInverse(vector(up_to,n,A033879(n)));
    A323910(n) = v323910[n];

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA033879(n/d) * a(d).
From Antti Karttunen, Nov 14 2024: (Start)
Following convolution formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly:
a(n) = Sum_{d|n} A046692(d)*A067824(n/d).
a(n) = Sum_{d|n} A055615(d)*A074206(n/d).
a(n) = Sum_{d|n} A023900(d)*A174725(n/d).
a(n) = Sum_{d|n} A008683(d)*A323912(n/d).
a(n) = Sum_{d|n} A191161(d)*A327960(n/d).
a(n) = Sum_{d|n} A328722(d)*A330575(n/d).
a(n) = Sum_{d|n} A345182(d)*A349341(n/d).
a(n) = Sum_{d|n} A346246(d)*A349387(n/d).
a(n) = Sum_{d|n} A002033(d-1)*A055615(n/d).
(End)

A046970 Dirichlet inverse of the Jordan function J_2 (A007434).

Original entry on oeis.org

1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -576, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576
Offset: 1

Views

Author

Douglas Stoll, dougstoll(AT)email.msn.com

Keywords

Comments

B(n+2) = -B(n)*((n+2)*(n+1)/(4*Pi^2))*z(n+2)/z(n) = -B(n)*((n+2)*(n+1)/(4*Pi^2)) * Sum_{j>=1} a(j)/j^(n+2).
Apart from signs also Sum_{d|n} core(d)^2*mu(n/d) where core(x) is the squarefree part of x. - Benoit Cloitre, May 31 2002

Examples

			a(3) = -8 because the divisors of 3 are {1, 3} and mu(1)*1^2 + mu(3)*3^2 = -8.
a(4) = -3 because the divisors of 4 are {1, 2, 4} and mu(1)*1^2 + mu(2)*2^2 + mu(4)*4^2 = -3.
E.g., a(15) = (3^2 - 1) * (5^2 - 1) = 8*24 = 192. - _Jon Perry_, Aug 24 2010
G.f. = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, pp. 805-811.
  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, p. 48.

Crossrefs

Dirichlet inverse of Jordan totient function J_r(n): A023900 (r = 1), A063453(r = 3), A189922 (r = 4).

Programs

  • Haskell
    a046970 = product . map ((1 -) . (^ 2)) . a027748_row
    -- Reinhard Zumkeller, Jan 19 2012
    
  • Maple
    Jinvk := proc(n,k) local a,f,p ; a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; a := a*(1-p^k) ; end do: a ; end proc:
    A046970 := proc(n) Jinvk(n,2) ; end proc: # R. J. Mathar, Jul 04 2011
  • Mathematica
    muDD[d_] := MoebiusMu[d]*d^2; Table[Plus @@ muDD[Divisors[n]], {n, 60}] (Lopez)
    Flatten[Table[{ x = FactorInteger[n]; p = 1; For[i = 1, i <= Length[x], i++, p = p*(1 - x[[i]][[1]]^2)]; p}, {n, 1, 50, 1}]] (* Jon Perry, Aug 24 2010 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ d], {d, Divisors @ n}]]; (* Michael Somos, Jan 11 2014 *)
    a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (1 - #[[1]]^2 & /@ FactorInteger @ n)]; (* Michael Somos, Jan 11 2014 *)
  • PARI
    A046970(n)=sumdiv(n,d,d^2*moebius(d)) \\ Benoit Cloitre
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X*p^2) / (1 - X))[n])}; /* Michael Somos, Jan 11 2014 */
    
  • Python
    from math import prod
    from sympy import primefactors
    def A046970(n): return prod(1-p**2 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023

Formula

Multiplicative with a(p^e) = 1 - p^2.
a(n) = Sum_{d|n} mu(d)*d^2.
abs(a(n)) = Product_{p prime divides n} (p^2 - 1). - Jon Perry, Aug 24 2010
From Wolfdieter Lang, Jun 16 2011: (Start)
Dirichlet g.f.: zeta(s)/zeta(s-2).
a(n) = J_{-2}(n)*n^2, with the Jordan function J_k(n), with J_k(1):=1. See the Apostol reference, p. 48. exercise 17. (End)
a(prime(n)) = -A084920(n). - R. J. Mathar, Aug 28 2011
G.f.: Sum_{k>=1} mu(k)*k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017
a(n) = Sum_{d divides n} d * (sigma_1(d))^(-1) * sigma_1(n/d), where (sigma_1(n))^(-1) = A046692(n) denotes the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024
a(n) = A076479(n) * A322360(n). - Amiram Eldar, Feb 02 2024

Extensions

Corrected and extended by Vladeta Jovovic, Jul 25 2001
Additional comments from Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Jul 01 2005
Showing 1-10 of 31 results. Next