cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A128161 Numbers k such that 2^k modulo Fibonacci(k) is prime, i.e., A057862(k) is prime.

Original entry on oeis.org

5, 7, 9, 13, 14, 19, 25, 88, 100, 113, 130, 440, 503, 2800, 3203, 3346, 4357, 6496, 8822, 16316, 20039, 22381, 30481, 33779, 71864, 110390, 127796, 441190, 457249
Offset: 1

Views

Author

Alexander Adamchuk, Feb 19 2007

Keywords

Comments

Corresponding primes in A057862 are {2, 11, 2, 37, 173, 1663, 18257, 447876604131364627, 55437674149894825801, ...}.

Crossrefs

Cf. A057862 = 2^n modulo Fibonacci(n). Cf. A128162, A128163.

Programs

  • Maple
    select(n->isprime(2 &^n mod combinat:-fibonacci(n)),[$1..3000]); # Muniru A Asiru, Jul 17 2018
  • Mathematica
    Do[f=PowerMod[2,n,Fibonacci[n]];If[PrimeQ[f],Print[{n,f}]],{n,1,503}]
  • PARI
    is(n)=ispseudoprime(2^n%fibonacci(n)) \\ Charles R Greathouse IV, Jun 19 2017
    
  • PFGW
    ABC2 2^$a % F($a)
    a: from 5 to 1000000
    // Charles R Greathouse IV, Jun 19 2017

Extensions

a(14)-a(19) from Stefan Steinerberger, Jun 10 2007
More terms from Ryan Propper, Jan 11 2008
a(25)-a(26) from Donovan Johnson, Sep 03 2008
a(27) from Charles R Greathouse IV, Jun 20 2017
a(28)-a(29) from Charles R Greathouse IV, Jun 30 2017

A030528 Triangle read by rows: a(n,k) = binomial(k,n-k).

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 3, 4, 1, 0, 0, 1, 6, 5, 1, 0, 0, 0, 4, 10, 6, 1, 0, 0, 0, 1, 10, 15, 7, 1, 0, 0, 0, 0, 5, 20, 21, 8, 1, 0, 0, 0, 0, 1, 15, 35, 28, 9, 1, 0, 0, 0, 0, 0, 6, 35, 56, 36, 10, 1, 0, 0, 0, 0, 0, 1, 21, 70, 84, 45, 11, 1, 0, 0, 0, 0, 0, 0, 7, 56, 126, 120, 55, 12, 1
Offset: 1

Views

Author

Keywords

Comments

A convolution triangle of numbers obtained from A019590.
a(n,m) := s1(-1; n,m), a member of a sequence of triangles including s1(0; n,m)= A023531(n,m) (unit matrix) and s1(2; n,m)= A007318(n-1,m-1) (Pascal's triangle).
The signed triangular matrix a(n,m)*(-1)^(n-m) is the inverse matrix of the triangular Catalan convolution matrix A033184(n+1,m+1), n >= m >= 0, with A033184(n,m) := 0 if n
Riordan array (1+x, x(1+x)). The signed triangle is the Riordan array (1-x,x(1-x)), inverse to (c(x),xc(x)) with c(x) g.f. for A000108. - Paul Barry, Feb 02 2005 [with offset 0]
Also, a(n,k)=number of compositions of n into k parts of 1's and 2's. Example: a(6,4)=6 because we have 2211, 2121, 2112, 1221, 1212 and 1122. - Emeric Deutsch, Apr 05 2005 [see MacMahon and Riordan. - Wolfdieter Lang, Jul 27 2023]
Subtriangle of A026729. - Philippe Deléham, Aug 31 2006
a(n,k) is the number of length n-1 binary sequences having no two consecutive 0's with exactly k-1 1's. Example: a(6,4)=6 because we have 01011, 01101, 01110, 10101, 10110, 11010. - Geoffrey Critzer, Jul 22 2013
Mirrored, shifted Fibonacci polynomials of A011973. The polynomials (illustrated below) of this entry have the property that p(n,t) = t * [p(n-1,t) + p(n-2,t)]. The additive properties of Pascal's triangle (A007318) are reflected in those of these polynomials, as can be seen in the Example Section below and also when the o.g.f. G(x,t) below is expanded as the series x*(1+x) + t * [x*(1+x)]^2 + t^2 * [x*(1+x)]^3 + ... . See also A053122 for a relation to Cartan matrices. - Tom Copeland, Nov 04 2014
Rows of this entry appear as columns of an array for an infinitesimal generator presented in the Copeland link. - Tom Copeland, Dec 23 2015
For n >= 2, the n-th row is also the coefficients of the vertex cover polynomial of the (n-1)-path graph P_{n-1}. - Eric W. Weisstein, Apr 10 2017
With an additional initial matrix element a_(0,0) = 1 and column of zeros a_(n,0) = 0 for n > 0, these are antidiagonals read from bottom to top of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper, which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Cf. A011973. And A169803. - Tom Copeland, Jul 02 2018

Examples

			Triangle starts:
  [ 1]  1
  [ 2]  1   1
  [ 3]  0   2   1
  [ 4]  0   1   3   1
  [ 5]  0   0   3   4   1
  [ 6]  0   0   1   6   5   1
  [ 7]  0   0   0   4  10   6   1
  [ 8]  0   0   0   1  10  15   7   1
  [ 9]  0   0   0   0   5  20  21   8   1
  [10]  0   0   0   0   1  15  35  28   9   1
  [11]  0   0   0   0   0   6  35  56  36  10   1
  [12]  0   0   0   0   0   1  21  70  84  45  11   1
  [13]  0   0   0   0   0   0   7  56 126 120  55  12   1
  ...
From _Tom Copeland_, Nov 04 2014: (Start)
For quick comparison to other polynomials:
  p(1,t) = 1
  p(2,t) = 1 + 1 t
  p(3,t) = 0 + 2 t + 1 t^2
  p(4,t) = 0 + 1 t + 3 t^2 + 1 t^3
  p(5,t) = 0 + 0   + 3 t^2 + 4 t^3 +  1 t^4
  p(6,t) = 0 + 0   + 1 t^2 + 6 t^3 +  5 t^4 +  1 t^5
  p(7,t) = 0 + 0   + 0     + 4 t^3 + 10 t^4 +  6 t^5 + 1 t^6
  p(8,t) = 0 + 0   + 0     + 1 t^3 + 10 t^4 + 15 t^5 + 7 t^6 + 1 t^7
  ...
Reading along columns gives rows for Pascal's triangle. (End)
		

References

  • P. A. MacMahon, Combinatory Analysis, Two volumes (bound as one), Chelsea Publishing Company, New York, 1960, Vol. I, nr. 124, p. 151.
  • John Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, London, 1958. eq. (35), p.124, 11. p. 154.

Crossrefs

Row sums A000045(n+1) (Fibonacci). a(n, 1)= A019590(n) (Fermat's last theorem). Cf. A049403.

Programs

  • Magma
    /* As triangle */ [[Binomial(k, n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Nov 05 2014
  • Maple
    for n from 1 to 12 do seq(binomial(k,n-k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Apr 05 2005
  • Mathematica
    nn=10;CoefficientList[Series[(1+x)/(1-y x - y x^2),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jul 22 2013 *)
    Table[Binomial[k, n - k], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Dec 23 2015 *)
    CoefficientList[Table[x^(n/2 - 1) Fibonacci[n + 1, Sqrt[x]], {n, 10}],
       x] // Flatten (* Eric W. Weisstein, Apr 10 2017 *)

Formula

a(n, m) = 2*(2*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: (x*(1+x))^m.
As a number triangle with offset 0, this is T(n, k) = Sum_{i=0..n} (-1)^(n+i)*binomial(n, i)*binomial(i+k+1, 2k+1). The antidiagonal sums give the Padovan sequence A000931(n+5). Inverse binomial transform of A078812 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
G.f.: (1 + x)/(1 - y*x - y*x^2). - Geoffrey Critzer, Jul 22 2013 [offset 0] [with offset 1: g.f. of row polynomials in y: x*(1+x)*y/(1 - x*(1+x)*y). - Wolfdieter Lang, Jul 27 2023]
From Tom Copeland, Nov 04 2014: (Start)
O.g.f: G(x,t) = x*(1+x) / [1 - t*x*(1+x)] = -P[Cinv(-x),t], where P(x,t)= x / (1 + t*x) and Cinv(x)= x*(1-x) are the compositional inverses in x of Pinv(x,t) = -P(-x,t) = x / (1 - t*x) and C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108.
Therefore, Ginv(x,t) = -C[Pinv(-x,t)] = {-1 + sqrt[1 + 4*x/(1+t*x)]}/2, which is -A124644(-x,t).
This places this array in a family of arrays related by composition of P and C and their inverses and interpolation by t, such as A091867 and A104597, and associated to the Catalan, Motzkin, Fine, and Fibonacci numbers. Cf. A104597 (polynomials shifted in t) A125145, A146559, A057078, A000045, A155020, A125145, A039717, A001792, A057862, A011973, A115139. (End)

Extensions

More terms from Emeric Deutsch, Apr 05 2005

A128162 a(n) = 3^n modulo Fibonacci(n).

Original entry on oeis.org

0, 0, 1, 0, 3, 1, 3, 9, 31, 34, 37, 81, 137, 347, 487, 690, 355, 1369, 2001, 1926, 5331, 1369, 4823, 8289, 74043, 77951, 188571, 284781, 490766, 166409, 1333373, 1803615, 1516839, 914943, 3619092, 3987873, 17604245, 8506938, 57277423, 24741861
Offset: 1

Author

Alexander Adamchuk, Feb 19 2007

Keywords

Comments

Numbers k such that a(k) is prime are listed in A128163. Corresponding primes in {a(n)} are {3, 3, 31, 37, 137, 347, 487, 77951, 166409, 13506083561, ...}.

Crossrefs

Cf. A128163, A128161, A057862 (2^n modulo Fibonacci(n)).

Programs

  • Maple
    f:= n -> 3 &^ n mod combinat:-fibonacci(n):
    map(f, [$1..100]); # Robert Israel, Jul 10 2020
  • Mathematica
    Table[PowerMod[3,n,Fibonacci[n]],{n,1,100}]
  • PARI
    a(n)=3^n%fibonacci(n) \\ Charles R Greathouse IV, Jun 19 2017
  • Sage
    [power_mod(3,n,fibonacci(n))for n in range(1,41)] # - Zerinvary Lajos, Nov 28 2009
    

A128163 Numbers k such that A128162(k) is prime.

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 15, 26, 30, 53, 66, 82, 155, 189, 225, 261, 625, 870, 1071, 7655, 8191, 8883, 9226, 12246, 70274, 71595, 108009, 127077
Offset: 1

Author

Alexander Adamchuk, Feb 19 2007

Keywords

Comments

Corresponding primes in A128162 are {3, 3, 31, 37, 137, 347, 487, 77951, 166409, 13506083561, ...}.

Crossrefs

Cf. A128162 (3^n modulo Fibonacci(n)), A128161, A057862 (2^n modulo Fibonacci(n)).

Programs

  • Mathematica
    Do[f=PowerMod[3,n,Fibonacci[n]];If[PrimeQ[f],Print[{n,f}]],{n,1,1071}]
    Select[Range[72000],PrimeQ[PowerMod[3,#,Fibonacci[#]]]&] (* Harvey P. Dale, Sep 11 2019 *)
  • PARI
    is(n)=ispseudoprime(3^n%fibonacci(n)) \\ Charles R Greathouse IV, Jun 19 2017
    
  • PFGW
    ABC2 3^$a % F($a)
    a: from 5 to 1000000
    // Charles R Greathouse IV, Jun 19 2017

Extensions

Corrected and extended by Stefan Steinerberger, Jun 10 2007
a(25)-a(26) from Donovan Johnson, Sep 03 2008
a(27)-a(28) from Michael S. Branicky, Nov 21 2024

A057861 floor[2^n/Fibonacci(n)].

Original entry on oeis.org

2, 4, 4, 5, 6, 8, 9, 12, 15, 18, 23, 28, 35, 43, 53, 66, 82, 101, 125, 155, 191, 236, 292, 361, 447, 552, 683, 844, 1044, 1290, 1595, 1971, 2437, 3012, 3723, 4602, 5689, 7032, 8692, 10744, 13280, 16415, 20291, 25081, 31002, 38320, 47366, 58548, 72370
Offset: 1

Author

Henry Bottomley, Sep 08 2000

Keywords

Comments

Growth of a(n) is roughly 4/(1+sqrt(5)) or about 1.236...

Formula

a(n) = [A000079(n)/A000045(n)] = (A000079(n) - A057862(n))/A000045(n)
Showing 1-5 of 5 results.