A128161 Numbers k such that 2^k modulo Fibonacci(k) is prime, i.e., A057862(k) is prime.
5, 7, 9, 13, 14, 19, 25, 88, 100, 113, 130, 440, 503, 2800, 3203, 3346, 4357, 6496, 8822, 16316, 20039, 22381, 30481, 33779, 71864, 110390, 127796, 441190, 457249
Offset: 1
Programs
-
Maple
select(n->isprime(2 &^n mod combinat:-fibonacci(n)),[$1..3000]); # Muniru A Asiru, Jul 17 2018
-
Mathematica
Do[f=PowerMod[2,n,Fibonacci[n]];If[PrimeQ[f],Print[{n,f}]],{n,1,503}]
-
PARI
is(n)=ispseudoprime(2^n%fibonacci(n)) \\ Charles R Greathouse IV, Jun 19 2017
-
PFGW
ABC2 2^$a % F($a) a: from 5 to 1000000 // Charles R Greathouse IV, Jun 19 2017
Extensions
a(14)-a(19) from Stefan Steinerberger, Jun 10 2007
More terms from Ryan Propper, Jan 11 2008
a(25)-a(26) from Donovan Johnson, Sep 03 2008
a(27) from Charles R Greathouse IV, Jun 20 2017
a(28)-a(29) from Charles R Greathouse IV, Jun 30 2017
Comments