cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A090121 Numbers n such that nextprime(n^3)-prevprime(n^3) = 4.

Original entry on oeis.org

2, 129, 189, 369, 435, 549, 555, 561, 819, 1245, 1491, 1719, 1779, 1839, 1875, 1935, 2175, 2289, 2415, 2451, 2595, 2709, 2769, 3141, 3441, 4401, 4611, 4851, 5655, 5775, 6075, 6099, 6795, 6969, 7125, 7239, 7365, 8109, 8139, 8325, 8361, 8385, 8535, 8685, 9591
Offset: 1

Views

Author

Labos Elemer, Jan 12 2004

Keywords

Examples

			n=129:{p=2146687,n^3=2146689,q=2146691}, q-p=4.
		

Crossrefs

Programs

  • Mathematica
    pre[x_] := Prime[PrimePi[x]] nex[x_] := Prime[PrimePi[x]+1] de[x_] := Prime[PrimePi[x]+1]-Prime[PrimePi[x]] k=3;Do[If[Equal[Prime[PrimePi[n^k]+1]-Prime[PrimePi[n^k]], 4], Print[n]], {n, 2, 100000}]
    lst={};Do[m=n^3;If[PrimeQ[m-2]&&PrimeQ[m+2],AppendTo[lst,n]],{n,0,10^5}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 04 2008 *)
    Select[Range[2,6100],NextPrime[#^3]-NextPrime[#^3,-1]==4&] (* Harvey P. Dale, Sep 17 2017 *)
  • PARI
    is(n)=if(n%2, isprime(n^3-2) && isprime(n^3+2), n==2) \\ Charles R Greathouse IV, Feb 22 2018

Formula

Solutions to A077038(x) = 4.

Extensions

More terms from Harvey P. Dale, Sep 17 2017

A060272 Distance from n^2 to closest prime.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 5, 2, 1, 2, 1, 4, 7, 2, 1, 2, 3, 6, 1, 6, 1, 2, 3, 2, 7, 6, 3, 2, 3, 2, 1, 2, 3, 2, 1, 12, 5, 2, 3, 2, 3, 2, 5, 2, 3, 8, 3, 6, 1, 2, 1, 2, 3, 10, 7, 2, 3, 2, 3, 4, 1, 4, 3, 2, 3, 2, 5, 4, 1, 2, 3, 2, 5, 6, 3, 2, 5, 6, 1, 4, 3, 4, 3, 2, 1, 6, 3, 2, 1, 4, 5, 4, 3, 2, 7, 8, 5, 2
Offset: 1

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Examples

			n=1: n^2=1 has next prime 2, so a(1)=1;
n=11: n^2=121 is between primes {113,127} and closer to 127, thus a(11)=6.
		

Crossrefs

Programs

  • Maple
    seq((s-> min(nextprime(s)-s, `if`(s>2, s-prevprime(s), [][])))(n^2), n=1..256);  # edited by Alois P. Heinz, Jul 16 2017
  • Mathematica
    Table[Function[k, Min[k - #, NextPrime@ # - k] &@ If[n == 1, 0, Prime@ PrimePi@ k]][n^2], {n, 103}] (* Michael De Vlieger, Jul 15 2017 *)
    Min[#-NextPrime[#,-1],NextPrime[#]-#]&/@(Range[110]^2) (* Harvey P. Dale, Jun 26 2021 *)
  • PARI
    a(n) = if (n==1, nextprime(n^2) - n^2, min(n^2 - precprime(n^2), nextprime(n^2) - n^2)); \\ Michel Marcus, Jul 16 2017

Formula

a(n) = abs(A000290(n) - A113425(n)) = abs(A000290(n) - A113426(n)). - Reinhard Zumkeller, Oct 31 2005

A077038 Least difference of primes p, q such that p < n^3 < q.

Original entry on oeis.org

4, 6, 6, 14, 12, 10, 12, 6, 12, 34, 10, 24, 8, 16, 6, 10, 12, 6, 16, 20, 12, 34, 22, 10, 6, 6, 18, 12, 18, 14, 22, 18, 12, 36, 14, 20, 8, 52, 10, 10, 16, 38, 34, 6, 40, 24, 10, 16, 12, 14, 8, 18, 20, 30, 20, 32, 18, 34, 40, 48, 10, 6, 8, 18, 10, 18, 18, 30, 30, 30, 42, 20, 6, 44
Offset: 2

Views

Author

Reinhard Zumkeller, Oct 21 2002

Keywords

Comments

Least m such that a(m)=2*n for n=1,2,3,... are: {2,3,14,7,6,5,15,28,21,24,13,...}. - Zak Seidov, May 10 2016
There are numbers k other than 2 such that a(k) = 4. The first few (up to 1000) are 129 189 369 435 549 555 561 819. Conjecture: every even integer greater than 2 occurs infinitely often in this sequence. - Franklin T. Adams-Watters, May 13 2016

Crossrefs

Programs

  • Mathematica
    Table[c=n^3;NextPrime[c]-NextPrime[c,-1],{n,2,80}] (* Harvey P. Dale, Sep 14 2012 *)

Formula

a(n) = A014220(n) - A077037(n).

A350100 Numbers k such that the prime gap between the consecutive primes p1 < k^2 < p2 sets a new record.

Original entry on oeis.org

2, 3, 5, 11, 23, 30, 41, 50, 76, 100, 149, 159, 189, 345, 437, 509, 693, 1110, 1165, 5018, 14908, 18906, 19079, 28634, 38682, 80444, 105686, 185179, 265236, 269697, 409049, 558269, 1673629, 2965232, 3528015, 4292936, 34919969, 43957056, 148793437, 187220890, 424171123
Offset: 1

Views

Author

Hugo Pfoertner, Dec 25 2021

Keywords

Comments

a(51) (in b-file) > 1.5*10^11, corresponding to A378904(51) > 723. - Hugo Pfoertner, Jan 04 2025

Examples

			  n  a(n)  p1   a(n)^2   p2   gap=2*A378904(n)
  1   2     3      4      5    2
  2   3     7      9     11    4
  3   5    23     25     29    6
  4  11   113    121    127   14
  5  23   523    529    541   18
  6  30   887    900    907   20
  7  41  1669   1681   1693   24
  8  50  2477   2500   2503   26
		

Crossrefs

A378904 are the corresponding gaps, divided by 2.

Programs

  • Mathematica
    Module[{nn=4242*10^5,pg},pg=Table[{n,NextPrime[n^2]-NextPrime[n^2,-1]},{n,2,nn}];DeleteDuplicates[pg,GreaterEqual[#1[[2]],#2[[2]]]&]][[All,1]] (* Harvey P. Dale, Jan 28 2023 *)
  • PARI
    a350100(limit) = {my(pmax=0); for(k=2,limit, my(kk=k*k, pp=precprime(kk), pn=nextprime(kk), d=pn-pp); if(d>pmax, print1(k,", "); pmax=d))};
    a350100(3000000)
    
  • Python
    from itertools import count, islice
    from sympy import prevprime, nextprime
    def A350100_gen(): # generator of terms
        c = 0
        for k in count(2):
            a = nextprime(m:=k**2)-prevprime(m)
            if a>c:
                yield k
                c = a
    A350100_list = list(islice(A350100_gen(),20)) # Chai Wah Wu, Dec 17 2024

A090122 Numbers k such that nextprime(k^4) - prevprime(k^4) = 4.

Original entry on oeis.org

2, 3, 21, 34, 46, 87, 99, 129, 141, 220, 242, 254, 266, 278, 279, 476, 526, 550, 616, 627, 657, 772, 777, 783, 795, 1072, 1088, 1322, 1442, 1486, 1540, 1552, 1586, 1653, 1725, 1833, 1959, 1994, 2001, 2043, 2068, 2192, 2224, 2360, 2384, 2432, 2734, 2770, 2866
Offset: 1

Views

Author

Labos Elemer, Jan 12 2004

Keywords

Examples

			For k = 21: k^4 = 194481, q = nextprime(k^4) = 194483, p = prevprime(k^4) = 194479, q - p = 4, so 21 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    pre[x_] := Prime[PrimePi[x]]; nex[x_] := Prime[PrimePi[x]+1]; de[x_] := Prime[PrimePi[x]+1]-Prime[PrimePi[x]]; k=4; Do[If[Equal[Prime[PrimePi[n^k]+1]-Prime[PrimePi[n^k]], 4], Print[n]], {n, 2, 100000}]
  • PARI
    is(k) = nextprime(k^4 + 1) - precprime(k^4 - 1) == 4; \\ Amiram Eldar, Jun 09 2024

Extensions

a(29)-a(49) from Giovanni Resta, May 08 2017

A090123 Integers k such that nextprime(k^5) - prevprime(k^5) = 4.

Original entry on oeis.org

411, 741, 819, 4041, 6165, 6315, 6861, 10281, 11025, 12489, 12579, 13119, 14331, 15225, 16095, 19125, 19881, 19929, 20799, 22461, 24051, 24885, 25815, 25971, 26979, 27075, 29955, 30801, 31641, 32661, 37371, 38361, 39369, 41181, 42681
Offset: 1

Views

Author

Labos Elemer, Jan 12 2004

Keywords

Examples

			For k = 411, k^5 = 11727599043051; nextprime(k^5) - prevprime(k^5) = 11727599043053 - 11727599043049 = 4, so k is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    pre[x_] := Prime[PrimePi[x]]; nex[x_] := Prime[PrimePi[x]+1]; de[x_] := Prime[PrimePi[x]+1]-Prime[PrimePi[x]]; k=5; Do[If[Equal[Prime[PrimePi[n^k]+1]-Prime[PrimePi[n^k]], 4], Print[n]], {n, 2, 100000}]
    np4Q[n_]:=Module[{c=n^5},NextPrime[c]-NextPrime[c,-1]==4]; Select[ Range[ 43000], np4Q] (* Harvey P. Dale, Oct 06 2017 *)
  • PARI
    isok(n) = (nextprime(n^5+1) - precprime(n^5-1)) == 4; \\ Michel Marcus, May 25 2018

Extensions

Wrong term 1 removed by Michel Marcus, May 25 2018

A378904 2*a(n) are the gaps that correspond to A350100(n).

Original entry on oeis.org

1, 2, 3, 7, 9, 10, 12, 13, 15, 17, 18, 20, 26, 27, 29, 33, 39, 41, 66, 75, 84, 90, 95, 100, 113, 126, 140, 144, 155, 162, 177, 204, 206, 210, 216, 302, 303, 364, 389, 391, 399, 418, 441, 469, 492, 497, 504, 520, 613, 723
Offset: 1

Views

Author

Hugo Pfoertner, Dec 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a378904(kmax) = my(d=0); for(k=2, kmax, my(k2=k*k, dd=(nextprime(k2)-precprime(k2))/2); if(dd>d, print1(dd,", "); d=dd));
    a378904(10^6)
    
  • Python
    from itertools import count, islice
    from sympy import prevprime, nextprime
    def A378904_gen(): # generator of terms
        c = 0
        for k in count(2):
            a = nextprime(m:=k**2)-prevprime(m)
            if a>c:
                yield a>>1
                c = a
    A378904_list = list(islice(A378904_gen(),20)) # Chai Wah Wu, Dec 17 2024

Extensions

a(50) from Hugo Pfoertner, Jan 04 2025

A060271 Difference between smallest prime following and largest prime preceding 2*(n-th prime).

Original entry on oeis.org

2, 2, 4, 4, 4, 6, 6, 4, 4, 6, 6, 6, 4, 6, 8, 4, 14, 14, 6, 10, 10, 6, 4, 6, 4, 12, 12, 12, 12, 4, 6, 6, 6, 4, 14, 14, 4, 14, 6, 10, 6, 8, 4, 6, 8, 4, 10, 6, 8, 4, 4, 12, 8, 4, 12, 18, 18, 6, 10, 6, 6, 10, 4, 12, 12, 10, 12, 4, 10, 10, 8, 10, 6, 8, 4, 8, 14, 10, 12, 10, 10, 14, 4, 14, 4, 4, 20, 8
Offset: 1

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Examples

			For n = 1: prime(1) = 2, 2*prime(1) = 4 is between 3 and 5, their difference is 2 = a(1).
For n = 6: prime(6) = 13, 2*prime(6) = 26 is between 23 and 29 and their difference is 6 = a(6).
		

Crossrefs

Programs

  • Maple
    with(numtheory): [seq(nextprime(2*ithprime(j))-prevprime(2*ithprime(j)),j=1...256)];
  • Mathematica
    dsplp[n_]:=Module[{np=2Prime[n]},NextPrime[np]-NextPrime[np,-1]]; Array[ dsplp,90] (* Harvey P. Dale, Mar 20 2013 *)
  • PARI
    a(n) = {my(m = 2*prime(n)); nextprime(m+1) - precprime(m-1);} \\ Amiram Eldar, Feb 08 2025

Extensions

Offset changed to 1 and a(1) prepended by Amiram Eldar, Feb 08 2025

A162417 Find max {primes such that p < n^2, n = 2,3,...}, then the gap g(n) between that prime and its successor. This sequence is the sequence of differences {2n - g(n)}.

Original entry on oeis.org

2, 2, 4, 4, 6, 8, 10, 14, 16, 8, 14, 20, 24, 26, 26, 24, 22, 30, 36, 38, 36, 28, 42, 38, 48, 48, 42, 44, 40, 48, 54, 62, 58, 64, 66, 68, 68, 66, 76, 58, 66, 72, 72, 80, 76, 88, 84, 86, 74, 86, 96, 90, 100, 96, 96, 92, 106, 96, 106, 114, 110, 104, 122, 120, 124, 124, 120, 114
Offset: 2

Views

Author

Daniel Tisdale, Jul 02 2009

Keywords

Comments

The unproved conjecture that 2n - g(n) > 0 would imply Legendre's conjecture, since the next prime after max {p < n^2} will always occur before (n+1)^2.

Crossrefs

Cf. A058043.

Programs

  • Magma
    [2*n-(NthPrime(#PrimesUpTo(n^2)+1)-NthPrime(#PrimesUpTo(n^2))): n in [2..100]]; // Vincenzo Librandi, Aug 02 2015
  • Maple
    with(numtheory): A162417:=n->2*n-(ithprime(pi(n^2)+1)-ithprime(pi(n^2))): seq(A162417(n), n=2..100); # Wesley Ivan Hurt, Aug 01 2015
  • Mathematica
    Table[2i - (Prime[PrimePi[i^2]+1]-Prime[PrimePi[i^2]]),{i,2,1000}]
    f[n_] := 2 n - Prime[PrimePi[n^2] + 1] + Prime[PrimePi[n^2]]; Table[ f@n, {n, 2, 69}] (* Robert G. Wilson v, Aug 17 2009 *)

Formula

a(n) = 2*n - A058043(n). - R. J. Mathar, Jul 13 2009

Extensions

Edited by N. J. A. Sloane, Jul 05 2009
Offset corrected by R. J. Mathar, Jul 13 2009
a(18) and further terms from Robert G. Wilson v, Aug 17 2009

A182487 Nextprime(F(n)) - prevprime(F(n)), where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

3, 4, 4, 6, 4, 6, 6, 14, 10, 10, 6, 6, 8, 18, 12, 24, 16, 10, 6, 12, 30, 12, 24, 42, 30, 24, 60, 24, 30, 34, 30, 36, 46, 12, 36, 18, 34, 24, 24, 30, 36, 52, 72, 16, 22, 48, 44, 50, 34, 20, 20, 28, 44, 50, 40, 92, 60, 86, 16, 52, 48, 66, 46, 168, 50, 174, 36
Offset: 4

Views

Author

Alex Ratushnyak, May 02 2012

Keywords

Comments

Smallest prime following Fibonacci(n) minus largest prime immediately preceding Fibonacci(n). Starting from Fibonacci(4), because for n<4 there is no prime preceding Fibonacci(n).

Examples

			a(0) = A014208(4) - A180422(0) = 5 - 2 = 3,
a(7) = A014208(11) - A180422(7) = 97-83 = 14.
		

Crossrefs

Cf. A079677 (distance from F(n) to the nearest prime).

Programs

  • Maple
    a:= n-> (f-> nextprime(f)-prevprime(f))(combinat[fibonacci](n)):
    seq(a(n), n=4..100);  # Alois P. Heinz, Jul 29 2015
  • Mathematica
    Table[f = Fibonacci[n]; NextPrime[f] - NextPrime[f, -1], {n, 4, 100}] (* T. D. Noe, May 02 2012 *)

Formula

a(n) = A014208(n+4) - A180422(n).
Showing 1-10 of 11 results. Next