cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A087417 Sum of the cubes of A058182.

Original entry on oeis.org

-1, 0, 0, 1, 2, 10, 135, 19818, 395466722, 156401766357161409, 24461512581491800525933058683030176
Offset: 0

Views

Author

Miklos Kristof, Oct 22 2003

Keywords

Comments

The sequence A058182=b(n) has the property: b(1)^3+b(2)^3+b(3)^3+...b(n)^3=b(n)*b(n+1)

Examples

			A058182 begins 1,1,2,5,27,734,538783...=b(n)
1^3+1^3=2=a(2)=1*2=b(2)*b(3).
1^3+1^3+2^3=10=a(3)=2*5=b(3)*b(4).
1^3+1^3+2^3+5^3=135=a(4)=5*27=b(4)*b(5).
1^3+1^3+2^3+5^3+27^3=19818=a(5)=b(5)*b(6).
		

Crossrefs

Cf. A058182.

Programs

  • PARI
    {a(n) = local(a0, a1, a2); if( n<0, a(-n), if( n<3, -(n==0), a0 = a1 = 1; for(i=4, n, a2 = a1^2 + a0; a0 = a1; a1 = a2); a1*a0))}; /* Michael Somos, May 22 2005 */

Formula

a(n+1) = a(n) + A058182(n)^3, a(-n) = a(n) for all n in Z.

A000278 a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 16, 65, 321, 4546, 107587, 20773703, 11595736272, 431558332068481, 134461531248108526465, 186242594112190847520182173826, 18079903385772308300945867582153787570051, 34686303861638264961101080464895364211215702792496667048327
Offset: 0

Views

Author

Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else Self(n-1) + Self(n-2)^2: n in [1..18]]; // Vincenzo Librandi, Dec 17 2015
  • Maple
    A000278 := proc(n) option remember; if n <= 1 then n else A000278(n-2)^2+A000278(n-1); fi; end;
  • Mathematica
    Join[{a=0,b=1},Table[c=a^2+b;a=b;b=c,{n,16}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *)
    RecurrenceTable[{a[n +2] == a[n +1] + a[n]^2, a[0] == 1, a[1] == 1}, a, {n, 0, 16}] (* Robert G. Wilson v, Apr 14 2017 *)
  • PARI
    a(n)=if(n<2,n>0,a(n-1)+a(n-2)^2)
    
  • Sage
    def A000278():
        x, y = 0, 1
        while True:
            yield x
            x, y = x + y, x * x
    a = A000278(); [next(a) for i in range(18)]  # Peter Luschny, Dec 17 2015
    

Formula

a(2n) is asymptotic to A^(sqrt(2)^(2n-1)) where A=1.668751581493687393311628852632911281060730869124873165099170786836201970866312366402366761987... and a(2n+1) to B^(sqrt(2)^(2n)) where B=1.693060557587684004961387955790151505861127759176717820241560622552858106116817244440438308887... See reference for proof. - Benoit Cloitre, May 03 2003

Extensions

Name edited by Petros Hadjicostas, Nov 03 2019

A001042 a(n) = a(n-1)^2 - a(n-2)^2.

Original entry on oeis.org

1, 2, 3, 5, 16, 231, 53105, 2820087664, 7952894429824835871, 63248529811938901240357985099443351745, 4000376523371723941902615329287219027543200136435757892789536976747706216384
Offset: 0

Views

Author

Keywords

Comments

The next term has 152 digits. - Franklin T. Adams-Watters, Jun 11 2009

References

  • Archimedeans Problems Drive, Eureka, 27 (1964), 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064236 (numbers of digits).

Programs

  • Haskell
    a001042 n = a001042_list !! n
    a001042_list = 1 : 2 : zipWith (-) (tail xs) xs
                   where xs = map (^ 2) a001042_list
    -- Reinhard Zumkeller, Dec 16 2013
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==a[n-1]^2-a[n-2]^2},a,{n,0,12}] (* Harvey P. Dale, Jan 11 2013 *)

Formula

a(n) ~ c^(2^n), where c = 1.1853051643868354640833201434870139866230288004895868726506278977814490371... . - Vaclav Kotesovec, Dec 17 2014

Extensions

More terms from James Sellers, Sep 19 2000.

A058181 Quadratic recurrence a(n) = a(n-1)^2 - a(n-2) for n >= 2 with a(0) = 1 and a(1) = 0.

Original entry on oeis.org

1, 0, -1, 1, 2, 3, 7, 46, 2109, 4447835, 19783236185116, 391376433956083065015485621, 153175513056180249189030531428945090978436751221570525
Offset: 0

Views

Author

Henry Bottomley, Nov 15 2000

Keywords

Examples

			a(6) = a(5)^2 - a(4) = 3^2 - 2 = 7.
		

Crossrefs

Cf. A058182.

Programs

  • GAP
    a:=[1,0];; for n in [3..15] do a[n]:=a[n-1]^2-a[n-2]; od; a; # G. C. Greubel, Jun 09 2019
  • Magma
    I:=[1,0]; [n le 2 select I[n] else Self(n-1)^2 - Self(n-2): n in [1..15]]; // G. C. Greubel, Jun 09 2019
    
  • Mathematica
    Join[{a=1,b=0},Table[c=b^2-a;a=b;b=c,{n,13}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    RecurrenceTable[{a[0]==1, a[1]==0, a[n]==a[n-1]^2 - a[n-2]}, a, {n, 13}] (* Vincenzo Librandi, Nov 11 2012 *)
  • PARI
    a(n)=if(n<0, a(-1-n), if(n<2, 1-n, a(n-1)^2-a(n-2))) /* Michael Somos, May 05 2005 */
    
  • Sage
    def a(n):
        if (n==0): return 1
        elif (n==1): return 0
        else: return a(n-1)^2 - a(n-2)
    [a(n) for n in (0..15)] # G. C. Greubel, Jun 09 2019
    

Formula

a(n)^2 = a(n+1) + a(n-1), a(-1-n) = a(n).
For n >= 4, a(n) = ceiling(c^(2^n)) with c=1.0303497388742578142745024606710866\
16436302563960998408889321488508667424048981473368773165340730475719244472111...
and c^(1/4) = 1.0075025785879710605024343257517358... - Benoit Cloitre, Apr 16 2007

A000284 a(n) = a(n-1)^3 + a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 2, 9, 731, 390617900, 59601394712394173339000731, 211723599072542785377729319366442939995427829921816290889198752331804918235791
Offset: 0

Views

Author

Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)

Keywords

Crossrefs

Cf. A058182.

Programs

  • Maple
    A000284 := proc(n) option remember; if n <= 1 then n else A000284(n-2)+A000284(n-1)^3; fi; end;
    a[-2]:=0: a[-1]:=1: a[0]:=1: a[1]:=2: for n from 2 to 6 do a[n]:=a[n-1]^3+a[n-2] od: seq(a[n], n=-2..6); # Zerinvary Lajos, Mar 19 2009
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]^3 + a[n-2], a[0] == 0, a[1] == 1}, a, {n, 0, 8}] (* Jean-François Alcover, Feb 06 2016 *)
    nxt[{a_,b_}]:={b,b^3+a}; NestList[nxt,{0,1},9][[All,1]] (* Harvey P. Dale, May 08 2020 *)

Formula

For n>0, a(n) = floor(c^(3^n)) where c=1.0275090796393628012075291021962112731026759143420911102331653107087209649910... - Gerald McGarvey, Nov 28 2007

Extensions

a(9) from Vincenzo Librandi, Apr 26 2010

A292433 a(0) = 0, a(1) = 1; a(n) = prime(a(n-1))*a(n-1) + a(n-2).

Original entry on oeis.org

0, 1, 2, 7, 121, 79988, 81600798165, 182421074243967704954243
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2017

Keywords

Examples

			+---+-------------+--------------------+-------------------+
| n | a(n)/a(n+1) | Continued fraction |      Comment      |
+---+-------------+--------------------+-------------------+
| 1 |    1/2      | [0; 2]             |   2 = prime(a(1)) |
+---+-------------+--------------------+-------------------+
| 2 |    2/7      | [0; 3, 2]          |   3 = prime(a(2)) |
+---+-------------+--------------------+-------------------+
| 3 |    7/121    | [0; 17, 3, 2]      |  17 = prime(a(3)) |
+---+-------------+--------------------+-------------------+
| 4 |  121/79988  | [0; 661, 17, 3, 2] | 661 = prime(a(4)) |
+---+-------------+--------------------+-------------------+
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == Prime[a[n - 1]] a[n - 1] + a[n - 2]}, a[n], {n, 7}]

A307799 a(0) = 0, a(1) = 3; a(n) = rev(a(n-1))*a(n-1) + a(n-2), where rev = digit reversal (A004086).

Original entry on oeis.org

0, 3, 9, 84, 4041, 5673648, 48020423368761, 806086788756824484462571572, 221815145293562950532110825781341443907408910699844537
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 29 2019

Keywords

Comments

The next term is too large to include.

Examples

			+---+--------------+---------------------+------------------+
| n | a(n)/a(n+1)  | Continued fraction  |      Comment     |
+---+--------------+---------------------+------------------+
| 1 |    3/9       | [0; 3]              |    3 = rev(a(1)) |
+---+--------------+---------------------+------------------+
| 2 |    9/84      | [0; 9, 3]           |    9 = rev(a(2)) |
+---+--------------+---------------------+------------------+
| 3 |   84/4041    | [0; 48, 9, 3]       |   48 = rev(a(3)) |
+---+--------------+---------------------+------------------+
| 4 | 4041/5673648 | [0; 1404, 48, 9, 3] | 1404 = rev(a(4)) |
+---+--------------+---------------------+------------------+
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = FromDigits[Reverse[IntegerDigits[a[n - 1]]]] a[n - 1] + a[n - 2]; a[0] = 0; a[1] = 3; Table[a[n], {n, 0, 8}]
Showing 1-7 of 7 results.