Original entry on oeis.org
-1, 0, 0, 1, 2, 10, 135, 19818, 395466722, 156401766357161409, 24461512581491800525933058683030176
Offset: 0
A058182 begins 1,1,2,5,27,734,538783...=b(n)
1^3+1^3=2=a(2)=1*2=b(2)*b(3).
1^3+1^3+2^3=10=a(3)=2*5=b(3)*b(4).
1^3+1^3+2^3+5^3=135=a(4)=5*27=b(4)*b(5).
1^3+1^3+2^3+5^3+27^3=19818=a(5)=b(5)*b(6).
-
{a(n) = local(a0, a1, a2); if( n<0, a(-n), if( n<3, -(n==0), a0 = a1 = 1; for(i=4, n, a2 = a1^2 + a0; a0 = a1; a1 = a2); a1*a0))}; /* Michael Somos, May 22 2005 */
A000278
a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
Original entry on oeis.org
0, 1, 1, 2, 3, 7, 16, 65, 321, 4546, 107587, 20773703, 11595736272, 431558332068481, 134461531248108526465, 186242594112190847520182173826, 18079903385772308300945867582153787570051, 34686303861638264961101080464895364211215702792496667048327
Offset: 0
Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)
-
[n le 2 select n-1 else Self(n-1) + Self(n-2)^2: n in [1..18]]; // Vincenzo Librandi, Dec 17 2015
-
A000278 := proc(n) option remember; if n <= 1 then n else A000278(n-2)^2+A000278(n-1); fi; end;
-
Join[{a=0,b=1},Table[c=a^2+b;a=b;b=c,{n,16}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *)
RecurrenceTable[{a[n +2] == a[n +1] + a[n]^2, a[0] == 1, a[1] == 1}, a, {n, 0, 16}] (* Robert G. Wilson v, Apr 14 2017 *)
-
a(n)=if(n<2,n>0,a(n-1)+a(n-2)^2)
-
def A000278():
x, y = 0, 1
while True:
yield x
x, y = x + y, x * x
a = A000278(); [next(a) for i in range(18)] # Peter Luschny, Dec 17 2015
A001042
a(n) = a(n-1)^2 - a(n-2)^2.
Original entry on oeis.org
1, 2, 3, 5, 16, 231, 53105, 2820087664, 7952894429824835871, 63248529811938901240357985099443351745, 4000376523371723941902615329287219027543200136435757892789536976747706216384
Offset: 0
- Archimedeans Problems Drive, Eureka, 27 (1964), 6.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..13
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- R. K. Guy, Letters to N. J. A. Sloane, June-August 1968
- R. P. Loh, A. G. Shannon, A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
-
a001042 n = a001042_list !! n
a001042_list = 1 : 2 : zipWith (-) (tail xs) xs
where xs = map (^ 2) a001042_list
-- Reinhard Zumkeller, Dec 16 2013
-
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==a[n-1]^2-a[n-2]^2},a,{n,0,12}] (* Harvey P. Dale, Jan 11 2013 *)
A058181
Quadratic recurrence a(n) = a(n-1)^2 - a(n-2) for n >= 2 with a(0) = 1 and a(1) = 0.
Original entry on oeis.org
1, 0, -1, 1, 2, 3, 7, 46, 2109, 4447835, 19783236185116, 391376433956083065015485621, 153175513056180249189030531428945090978436751221570525
Offset: 0
a(6) = a(5)^2 - a(4) = 3^2 - 2 = 7.
- Vincenzo Librandi, Table of n, a(n) for n = 0..16
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Index entries for sequences of form a(n+1) = a(n)^2 + ...
-
a:=[1,0];; for n in [3..15] do a[n]:=a[n-1]^2-a[n-2]; od; a; # G. C. Greubel, Jun 09 2019
-
I:=[1,0]; [n le 2 select I[n] else Self(n-1)^2 - Self(n-2): n in [1..15]]; // G. C. Greubel, Jun 09 2019
-
Join[{a=1,b=0},Table[c=b^2-a;a=b;b=c,{n,13}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
RecurrenceTable[{a[0]==1, a[1]==0, a[n]==a[n-1]^2 - a[n-2]}, a, {n, 13}] (* Vincenzo Librandi, Nov 11 2012 *)
-
a(n)=if(n<0, a(-1-n), if(n<2, 1-n, a(n-1)^2-a(n-2))) /* Michael Somos, May 05 2005 */
-
def a(n):
if (n==0): return 1
elif (n==1): return 0
else: return a(n-1)^2 - a(n-2)
[a(n) for n in (0..15)] # G. C. Greubel, Jun 09 2019
A000284
a(n) = a(n-1)^3 + a(n-2) with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 1, 2, 9, 731, 390617900, 59601394712394173339000731, 211723599072542785377729319366442939995427829921816290889198752331804918235791
Offset: 0
Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)
-
A000284 := proc(n) option remember; if n <= 1 then n else A000284(n-2)+A000284(n-1)^3; fi; end;
a[-2]:=0: a[-1]:=1: a[0]:=1: a[1]:=2: for n from 2 to 6 do a[n]:=a[n-1]^3+a[n-2] od: seq(a[n], n=-2..6); # Zerinvary Lajos, Mar 19 2009
-
RecurrenceTable[{a[n] == a[n-1]^3 + a[n-2], a[0] == 0, a[1] == 1}, a, {n, 0, 8}] (* Jean-François Alcover, Feb 06 2016 *)
nxt[{a_,b_}]:={b,b^3+a}; NestList[nxt,{0,1},9][[All,1]] (* Harvey P. Dale, May 08 2020 *)
A292433
a(0) = 0, a(1) = 1; a(n) = prime(a(n-1))*a(n-1) + a(n-2).
Original entry on oeis.org
0, 1, 2, 7, 121, 79988, 81600798165, 182421074243967704954243
Offset: 0
+---+-------------+--------------------+-------------------+
| n | a(n)/a(n+1) | Continued fraction | Comment |
+---+-------------+--------------------+-------------------+
| 1 | 1/2 | [0; 2] | 2 = prime(a(1)) |
+---+-------------+--------------------+-------------------+
| 2 | 2/7 | [0; 3, 2] | 3 = prime(a(2)) |
+---+-------------+--------------------+-------------------+
| 3 | 7/121 | [0; 17, 3, 2] | 17 = prime(a(3)) |
+---+-------------+--------------------+-------------------+
| 4 | 121/79988 | [0; 661, 17, 3, 2] | 661 = prime(a(4)) |
+---+-------------+--------------------+-------------------+
-
RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == Prime[a[n - 1]] a[n - 1] + a[n - 2]}, a[n], {n, 7}]
A307799
a(0) = 0, a(1) = 3; a(n) = rev(a(n-1))*a(n-1) + a(n-2), where rev = digit reversal (A004086).
Original entry on oeis.org
0, 3, 9, 84, 4041, 5673648, 48020423368761, 806086788756824484462571572, 221815145293562950532110825781341443907408910699844537
Offset: 0
+---+--------------+---------------------+------------------+
| n | a(n)/a(n+1) | Continued fraction | Comment |
+---+--------------+---------------------+------------------+
| 1 | 3/9 | [0; 3] | 3 = rev(a(1)) |
+---+--------------+---------------------+------------------+
| 2 | 9/84 | [0; 9, 3] | 9 = rev(a(2)) |
+---+--------------+---------------------+------------------+
| 3 | 84/4041 | [0; 48, 9, 3] | 48 = rev(a(3)) |
+---+--------------+---------------------+------------------+
| 4 | 4041/5673648 | [0; 1404, 48, 9, 3] | 1404 = rev(a(4)) |
+---+--------------+---------------------+------------------+
-
a[n_] := a[n] = FromDigits[Reverse[IntegerDigits[a[n - 1]]]] a[n - 1] + a[n - 2]; a[0] = 0; a[1] = 3; Table[a[n], {n, 0, 8}]
Showing 1-7 of 7 results.
Comments