A039661 Decimal expansion of exp(Pi).
2, 3, 1, 4, 0, 6, 9, 2, 6, 3, 2, 7, 7, 9, 2, 6, 9, 0, 0, 5, 7, 2, 9, 0, 8, 6, 3, 6, 7, 9, 4, 8, 5, 4, 7, 3, 8, 0, 2, 6, 6, 1, 0, 6, 2, 4, 2, 6, 0, 0, 2, 1, 1, 9, 9, 3, 4, 4, 5, 0, 4, 6, 4, 0, 9, 5, 2, 4, 3, 4, 2, 3, 5, 0, 6, 9, 0, 4, 5, 2, 7, 8, 3, 5, 1, 6, 9, 7, 1, 9, 9, 7, 0, 6, 7, 5, 4, 9, 2
Offset: 2
A059850 Decimal expansion of Pi^e.
2, 2, 4, 5, 9, 1, 5, 7, 7, 1, 8, 3, 6, 1, 0, 4, 5, 4, 7, 3, 4, 2, 7, 1, 5, 2, 2, 0, 4, 5, 4, 3, 7, 3, 5, 0, 2, 7, 5, 8, 9, 3, 1, 5, 1, 3, 3, 9, 9, 6, 6, 9, 2, 2, 4, 9, 2, 0, 3, 0, 0, 2, 5, 5, 4, 0, 6, 6, 9, 2, 6, 0, 4, 0, 3, 9, 9, 1, 1, 7, 9, 1, 2, 3, 1, 8, 5, 1, 9, 7, 5, 2, 7, 2, 7, 1, 4, 3, 0, 3, 1, 5, 3, 1, 4, 5, 0
Offset: 2
Comments
Pi^e is conjectured to be transcendental.
Examples
22.459157718361045473427152204543735027589315133996692...
References
- C. Pickover, Wonders of Numbers, Chap. 44, "The 15 Most Famous Transcendental Numbers", Oxford University Press, NY, 2001, p. 103.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 100.
Links
- Harry J. Smith, Table of n, a(n) for n = 2..20000
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
- Simon Plouffe, Pi**exp(1) to 2000 digits.
- Simon Plouffe, Pi**exp(1) to 2000 digits.
Crossrefs
Cf. A058288.
Programs
-
Mathematica
RealDigits[N[Pi^E,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
-
PARI
{ default(realprecision, 20080); x=Pi^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b059850.txt", n, " ", d)); } \\ Harry J. Smith, Apr 18 2009
Extensions
More terms from James Sellers, Jan 19 2000
A064107 Continued fraction quotients for e^e = 15.15426224... (A073226).
15, 6, 2, 13, 1, 3, 6, 2, 1, 1, 5, 1, 1, 1, 9, 4, 1, 1, 1, 6, 7, 1, 2, 4, 1, 2, 2, 24, 1, 2, 4, 56, 1, 1, 2, 4, 1, 75, 1, 5, 1, 2, 2, 1, 137, 2, 2, 97, 3, 16, 1, 1, 1, 1, 3, 5, 12, 1, 1, 2, 1, 53, 1, 2, 5, 3, 2, 4, 1, 2, 1, 39, 1, 2, 1, 4, 1, 11, 1, 5, 5, 1, 4, 1, 17, 12, 4, 82, 1, 4, 6, 25, 3, 2, 3
Offset: 0
Comments
It was conjectured (but remains unproved) that this sequence is infinite and aperiodic, but it is difficult to determine who first posed this problem. - Vladimir Reshetnikov, Apr 27 2013
Examples
15.154262241479264189760430... = 15 + 1/(6 + 1/(2 + 1/(13 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 30 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..19999
- Eric Weisstein's World of Mathematics, Transcendental Number.
- Wikipedia, List of unsolved problems in mathematics, Analysis.
- Wikipedia, Irrational number, Open questions.
Programs
-
Maple
with(numtheory): cfrac(evalf((exp(1))^(exp(1)),2560),256,'quotients');
-
Mathematica
ContinuedFraction[E^E,100] (* Harvey P. Dale, Sep 29 2012 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(exp(1))); for (n=1, 20000, write("b064107.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 30 2009
Extensions
Offset changed by Andrew Howroyd, Aug 05 2024
A116907 Continued fraction expansion for e^(-e) = 0.0659880358453125370767901875.
0, 15, 6, 2, 13, 1, 3, 6, 2, 1, 1, 5, 1, 1, 1, 9, 4, 1, 1, 1, 6, 7, 1, 2, 4, 1, 2, 2, 24, 1, 2, 4, 56, 1, 1, 2, 4, 1, 75, 1, 5, 1, 2, 2, 1, 137, 2, 2, 97, 3, 16, 1, 1, 1, 1, 3, 5, 12, 1, 1, 2, 1, 53, 1, 2, 5, 3, 2, 4, 1, 2, 1, 39, 1, 2, 1, 4, 1, 11, 1, 5, 5, 1, 4, 1, 17, 12, 4, 82, 1, 4, 6, 25, 3, 2, 3, 39
Offset: 1
Comments
e^(-e) = (1/e)^e = 1/(e^e) = (reciprocal of A073226). e^(-e) = 0.0659880358453125370767901875... = 0 + 1/15+ 1/6+ 1/2+ 1/13+ 1/1+ 1/3+ 1/6+ 1/2+ ... See also: A073230 Decimal expansion of (1/e)^e. See also: A064107 Continued fraction quotients for e^e = 15.15426223. See also: A058287 Continued fraction for e^Pi. See also: A058288 Continued fraction expansion of Pi^e.
Comments
Examples
References
Links
Crossrefs
Programs
Mathematica
PARI
PARI
Formula