cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A063503 Continued fraction for e^Pi - Pi^e (A063504 = A039661 - A059850).

Original entry on oeis.org

0, 1, 2, 7, 7, 6, 2, 1, 6, 2, 5, 7, 1, 3, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 11, 5, 6, 2, 1, 124, 1, 4, 2, 1, 1, 3, 18, 1, 1, 1, 1, 17, 1, 2, 10, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 4, 84, 1, 1, 1, 4, 1, 1, 15, 2, 1, 1, 17, 1, 1, 8, 1, 1, 10, 1, 3, 1, 2, 2, 1, 2, 1, 2, 4, 22, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 9
Offset: 0

Views

Author

Robert G. Wilson v, Jul 30 2001

Keywords

Examples

			0.6815349144182235323019341634048123526710...
		

Crossrefs

Cf. A063504 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[E^Pi - Pi^E, 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); e=exp(1); x=contfrac(e^Pi - Pi^e); for (n=1, 20000, write("b063503.txt", n-1, " ", x[n])) } \\ Harry J. Smith, Aug 24 2009

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A039661 Decimal expansion of exp(Pi).

Original entry on oeis.org

2, 3, 1, 4, 0, 6, 9, 2, 6, 3, 2, 7, 7, 9, 2, 6, 9, 0, 0, 5, 7, 2, 9, 0, 8, 6, 3, 6, 7, 9, 4, 8, 5, 4, 7, 3, 8, 0, 2, 6, 6, 1, 0, 6, 2, 4, 2, 6, 0, 0, 2, 1, 1, 9, 9, 3, 4, 4, 5, 0, 4, 6, 4, 0, 9, 5, 2, 4, 3, 4, 2, 3, 5, 0, 6, 9, 0, 4, 5, 2, 7, 8, 3, 5, 1, 6, 9, 7, 1, 9, 9, 7, 0, 6, 7, 5, 4, 9, 2
Offset: 2

Views

Author

Keywords

Comments

e^Pi and Pi^e (A059850) differ by hardly 3% in magnitude. The determination of the inequality sign between them does not require their actual evaluation, the result being immediate from the basic facts Pi>e and log(x+1)0) yields log(Pi)
The formulas give e^Pi, not a(n). Note that e^Pi - Pi = 19.999099979...; that's why e^Pi and 20 + Pi have many common decimal digits. - M. F. Hasler, Oct 24 2009
e^Pi is transcendental, as proved by Gelfond. - Charles R Greathouse IV, May 07 2013
Nesterenko proves that this constant is algebraically independent of Pi and Gamma(1/4) over Q. - Charles R Greathouse IV, Nov 11 2013
Sum of the volumes of all even-dimensional unit spheres. - Paolo Xausa, Nov 14 2021

Examples

			23.1406926327792690...
		

References

  • L. Berggren, J. Borwein, and P. Borwein, "Pi: a source Book", second edition, Springer, p. 422.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 101.

Crossrefs

Cf. A059850 (Pi^e).
Cf. A058287 = contfrac(e^Pi), A058288 = contfrac(Pi^e).

Programs

  • Mathematica
    RealDigits[N[E^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    default(realprecision, 20080); x=exp(1)^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b039661.txt", n, " ", d)); \\ Harry J. Smith, Apr 18 2009
    
  • PARI
    A039661(n)=default(realprecision,n);exp(Pi)\10^(3-n)%10 \\ M. F. Hasler, Oct 24 2009

Formula

e^Pi = 32*Product_{j>=0} (u(j+1)/u(j))^(2^(-j+1)) where u(0)=1 and v(0)=1/sqrt(2); u(n+1) = u(n)/2 + v(n)/2, v(n+1) = sqrt(u(n)*v(n)) (deduced from Salamin algorithm for Pi). - Benoit Cloitre, Aug 14 2003
e^Pi = Sum_{k>=0} a(k)/k!/2^k where a(0)=1, a(1)=6 and a(n) = (40 - 4*n + n^2)*a(n-2) for n>=2 (from expansion of exp(6*asin(x)) at x=1/2). - Jaume Oliver Lafont, Oct 21 2009
exp(Pi) ~= log(Pi) + 7*Pi. - Alexander R. Povolotsky, Oct 24 2009
Equals Sum_{k>=0} Pi^k/k!. - Paolo Xausa, Nov 14 2021

A073244 Decimal expansion of Pi - e.

Original entry on oeis.org

4, 2, 3, 3, 1, 0, 8, 2, 5, 1, 3, 0, 7, 4, 8, 0, 0, 3, 1, 0, 2, 3, 5, 5, 9, 1, 1, 9, 2, 6, 8, 4, 0, 3, 8, 6, 4, 3, 9, 9, 2, 2, 3, 0, 5, 6, 7, 5, 1, 4, 6, 2, 4, 6, 0, 0, 7, 9, 7, 6, 9, 6, 4, 5, 8, 3, 7, 3, 9, 7, 7, 5, 9, 3, 2, 6, 6, 1, 4, 0, 4, 0, 5, 6, 6, 5, 2, 6, 4, 6, 8, 1, 6, 9, 5, 0, 6, 4, 0, 5, 5, 4, 6, 8
Offset: 0

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Examples

			0.42331082513074800310235591192...
		

Crossrefs

Cf. A059742 (Pi+e), A000796 (Pi), A001113 (e), A019609 (Pi*e), A061382 (Pi/e), A061360 (e/Pi), A039661 (e^Pi), A059850 (Pi^e), A073233 (Pi^Pi), A073226 (e^e), A049006 (i^i = e^(-Pi/2)).
Cf. A110564 for continued fraction for Pi - e.

Programs

A063504 Decimal expansion of e^Pi - Pi^e.

Original entry on oeis.org

6, 8, 1, 5, 3, 4, 9, 1, 4, 4, 1, 8, 2, 2, 3, 5, 3, 2, 3, 0, 1, 9, 3, 4, 1, 6, 3, 4, 0, 4, 8, 1, 2, 3, 5, 2, 6, 7, 6, 7, 9, 1, 1, 0, 8, 6, 0, 3, 5, 1, 9, 7, 4, 4, 2, 4, 2, 0, 4, 3, 8, 5, 5, 4, 5, 7, 4, 1, 6, 3, 1, 0, 2, 9, 1, 3, 3, 4, 8, 7, 1, 1, 9, 8, 4, 5, 2, 2, 4, 4, 3, 4, 0, 4, 0, 6, 1, 8, 8, 1, 4, 4, 5, 0, 2
Offset: 0

Author

Robert G. Wilson v, Jul 30 2001

Keywords

Comments

A classic calculus analysis problem is to discover whether e^Pi or Pi^e is the greater without the use of a calculator.

Examples

			0.681534914418223532301934163404812352676791108603519744242043855457416... - _Harry J. Smith_, Aug 24 2009
		

References

  • Paul J. Nahin, When Least Is Best, How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible, Princeton University Press, Princeton NJ, 2004, Page 144.
  • Alfred S. Posamentier & Ingmar Hehmann, Pi: A Biography of the World's Most Mysterious Number, Prometheus Books, NY 2002, pages 146, 301-304.

Crossrefs

Equals A039661 - A059850.
Cf. A063503.

Programs

  • Mathematica
    RealDigits[N[E^Pi - Pi^E, 100]][[1]]
  • PARI
    { default(realprecision, 20080); e=exp(1); x=10*(e^Pi - Pi^e); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b063504.txt", n, " ", d)) } \\ Harry J. Smith, Aug 24 2009

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A058288 Continued fraction expansion of Pi^e.

Original entry on oeis.org

22, 2, 5, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 9, 15, 25, 1, 1, 5, 4, 1, 2, 1, 1, 50, 1, 1, 1, 1, 7, 1, 1, 1, 3, 6, 1, 20, 10, 1, 2, 10, 1, 8, 2, 2, 1, 1, 1, 4, 1, 43, 2, 2, 3, 1, 2, 8, 1, 1, 16, 1, 4, 1, 3, 1, 1, 1, 2, 1, 1, 6, 1, 2, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 9, 1, 1, 105, 1, 3, 6, 2, 1, 1, 3, 1, 3, 2, 1, 1
Offset: 0

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Examples

			Pi^e = 22.459157718361045473... = 22 + 1/(2 + 1/(5 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 19 2009
		

Crossrefs

Cf. A059850.

Programs

  • Maple
    cfrac(evalf((evalf(Pi))^(exp(1)),2560),256,'quotients');
  • Mathematica
    ContinuedFraction[ Pi^E, 100]
  • PARI
    contfrac(Pi^exp(1))
    
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^exp(1)); for (n=0, 20000, write("b058288.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Apr 19 2009

Extensions

More terms from Jason Earls, Jul 12 2001

A104691 Decimal expansions of e and Pi interlaced.

Original entry on oeis.org

2, 3, 7, 1, 1, 4, 8, 1, 2, 5, 8, 9, 1, 2, 8, 6, 2, 5, 8, 3, 4, 5, 5, 8, 9, 9, 0, 7, 4, 9, 5, 3, 2, 2, 3, 3, 5, 8, 3, 4, 6, 6, 0, 2, 2, 6, 8, 4, 7, 3, 4, 3, 7, 8, 1, 3, 3, 2, 5, 7, 2, 9, 6, 5, 6, 0, 2, 2, 4, 8, 9, 8, 7, 4, 7, 1, 5, 9, 7, 7, 2, 1, 4, 6, 7, 9, 0, 3, 9, 9, 3, 9, 6, 3, 9, 7, 9, 5, 9, 1, 5, 0, 9, 5, 5
Offset: 1

Author

Zak Seidov, Apr 23 2005

Keywords

Comments

Within 2.5 per cent of e^Pi (A039661: 23.14069...) or 5.5 per cent of Pi^e (A059850: 22.45915...). - Robert G. Wilson v, Jan 04 2013

Crossrefs

Cf. A001355.

Programs

  • Mathematica
    Riffle[RealDigits[E, 10, 53][[1]], RealDigits[Pi, 10, 53][[1]]] (* Robert G. Wilson v, Jan 04 2013 *)

A038153 Beatty sequence for Pi^e.

Original entry on oeis.org

22, 44, 67, 89, 112, 134, 157, 179, 202, 224, 247, 269, 291, 314, 336, 359, 381, 404, 426, 449, 471, 494, 516, 539, 561, 583, 606, 628, 651, 673, 696, 718, 741, 763, 786, 808, 830, 853, 875, 898, 920, 943, 965, 988, 1010, 1033, 1055, 1078, 1100, 1122, 1145
Offset: 1

Author

Keywords

Crossrefs

Cf. A059850. - R. J. Mathar, Oct 10 2010

Programs

Formula

a(n) = floor(n * 22.4591577...).

Extensions

Extended by R. J. Mathar, Oct 10 2010

A059197 Engel expansion of Pi^e = 22.4592.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 8, 17, 111, 236, 419, 2475, 3741, 4123, 5563, 5622, 18000, 33641, 42744, 130605, 696987, 975174, 1034590, 2806140, 14026897, 14137435, 65788323, 73121589, 229261119
Offset: 1

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A059850.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Pi^E, 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)

A092171 Decimal expansion of Pi^(-e).

Original entry on oeis.org

0, 4, 4, 5, 2, 5, 2, 6, 7, 2, 6, 6, 9, 2, 2, 9, 0, 6, 1, 5, 1, 3, 5, 2, 7, 2, 9, 7, 2, 8, 5, 3, 9, 0, 1, 7, 5, 5, 6, 5, 3, 0, 1, 2, 4, 0, 2, 4, 9, 1, 2, 7, 3, 4, 4, 3, 1, 3, 3, 3, 7, 6, 8, 4, 1, 3, 3, 6, 4, 2, 7, 8, 3, 3, 0, 4, 6, 4, 7, 3, 1, 8, 5, 6, 0, 2, 8, 9, 3, 9, 5, 3, 9, 0, 2, 2, 3, 7, 5, 7, 4, 8, 9, 6, 3
Offset: 0

Author

Mohammad K. Azarian, Apr 01 2004

Keywords

Examples

			0.0445252672669229...
		

Crossrefs

Equals 1/A059850.

A092173 Decimal expansion of Pi^(2*e).

Original entry on oeis.org

5, 0, 4, 4, 1, 3, 7, 6, 5, 4, 1, 8, 2, 1, 6, 5, 2, 1, 9, 8, 6, 2, 7, 1, 1, 3, 2, 5, 2, 4, 7, 6, 0, 5, 1, 8, 8, 9, 5, 5, 0, 6, 4, 4, 9, 9, 8, 2, 3, 6, 3, 9, 0, 7, 3, 4, 2, 0, 6, 5, 7, 7, 7, 9, 0, 1, 8, 9, 1, 7, 3, 0, 5, 3, 3, 6, 8, 7, 9, 1, 2, 5, 4, 5, 4, 9, 9, 2, 3, 6, 8, 5, 7, 0, 1, 4, 0, 7, 6, 0, 3, 1, 4, 7, 7
Offset: 3

Author

Mohammad K. Azarian, Apr 01 2004

Keywords

Examples

			504.41376541821652...
		

Crossrefs

Cf. A059850.

Programs

  • Mathematica
    RealDigits[Pi^(2E),10,120][[1]] (* Harvey P. Dale, May 12 2025 *)
Showing 1-10 of 16 results. Next