A187605
Primes of the form k^k + k - 1.
Original entry on oeis.org
5, 29, 1978419655660313589123997, 205891132094649000000000000000000000000000029
Offset: 1
-
Do[p=n^n+n-1; If[PrimeQ[p], Print[p]], {n, 100}]
-
lista(nn) = for(k=1, nn, if(ispseudoprime(q=k^k+k-1), print1(q, ", "))); \\ Jinyuan Wang, Mar 01 2020
A231712
a(n) = n^n + n - 1.
Original entry on oeis.org
0, 1, 5, 29, 259, 3129, 46661, 823549, 16777223, 387420497, 10000000009, 285311670621, 8916100448267, 302875106592265, 11112006825558029, 437893890380859389, 18446744073709551631, 827240261886336764193, 39346408075296537575441, 1978419655660313589123997
Offset: 0
A058911
Numbers k such that k^k + k + 1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 6, 9, 462
Offset: 1
a(2) = 2 because 2^2 + 2 + 1 = 7.
-
Do[ If[ PrimeQ[ n^n + n + 1], Print[n]], {n, 1, 700} ]
Join[{0},Select[Range[470],PrimeQ[#^#+#+1]&]] (* Harvey P. Dale, Dec 11 2022 *)
-
f2(n,k) = for(x=1,n,y=x^x+x+k;if(ispseudoprime(y),print1(x","))) \\ Cino Hilliard, Jan 07 2005
-
ABC2 $a^$a + $a + 1
a: from 0 to 1000 // Jinyuan Wang, Mar 01 2020
A065798
Numbers k such that k^k - k - 1 is prime.
Original entry on oeis.org
3, 4, 5, 6, 9, 17, 22, 85, 710, 844, 1379
Offset: 1
-
Do[ If[ PrimeQ[ n^n - n - 1], Print[n]], {n, 1, 750} ]
-
is(n)=ispseudoprime(n^n-n-1) \\ Charles R Greathouse IV, May 22 2017
A357055
Integers k such that k^k + k^2 + 3*k + 2 is prime.
Original entry on oeis.org
0, 1, 3, 5, 11, 209, 1281
Offset: 1
For k = 3, k^k + k^2 + 3*k + 2 = 47 and 47 is prime.
A357056
Integers k such that k^k + k^2 + 2*k + 1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 9, 10, 13, 15, 24
Offset: 1
If k = 2, then k^k + k^2 + k*2 + 1 = 2^2 + 2^2 + 2*2 + 1 = 13, which is prime.
Showing 1-6 of 6 results.
Comments