A058912
Numbers k such that k^k + k - 1 is prime.
Original entry on oeis.org
2, 3, 19, 30, 535, 1551, 7069, 8508
Offset: 1
3 is a term because 3^3 + 3 - 1 = 29.
-
Do[ If[ PrimeQ[ n^n + n - 1], Print[n]], {n, 1, 750} ]
-
is(n)=ispseudoprime(n^n+n-1) \\ Charles R Greathouse IV, Feb 20 2017
A231712
a(n) = n^n + n - 1.
Original entry on oeis.org
0, 1, 5, 29, 259, 3129, 46661, 823549, 16777223, 387420497, 10000000009, 285311670621, 8916100448267, 302875106592265, 11112006825558029, 437893890380859389, 18446744073709551631, 827240261886336764193, 39346408075296537575441, 1978419655660313589123997
Offset: 0
A161471
Primes of the form k^k + k + 1.
Original entry on oeis.org
2, 3, 7, 31, 46663, 387420499
Offset: 1
-
Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; lst={}; Do[p=n^n+n+1; If[PrimeQ[p], AppendTo[lst,p]], {n,0,100}]; lst
Join[{2},Select[Table[k^k+k+1,{k,1000}],PrimeQ]] (* Harvey P. Dale, Oct 09 2022 *)
-
lista(nn) = for(k=0, nn, if(ispseudoprime(q=k^k+k+1), print1(q, ", "))); \\ Jinyuan Wang, Mar 01 2020
A268987
Primes of the form k^(k + 1) + k - 1.
Original entry on oeis.org
83, 15629, 279941, 3486784409, 6568408355712890639
Offset: 1
Cf.
A309140 (the corresponding values of k).
-
[a: n in [0..100] | IsPrime(a) where a is n^(n+1)+n-1]; // Vincenzo Librandi, Feb 17 2016
-
Select[Table[n^(n + 1) + n - 1, {n, 1, 50}], ProvablePrimeQ[#] &]
-
lista(nn) = for(k=1, nn, if(ispseudoprime(q=k^(k+1)+k-1), print1(q, ", "))); \\ Jinyuan Wang, Mar 01 2020
A357055
Integers k such that k^k + k^2 + 3*k + 2 is prime.
Original entry on oeis.org
0, 1, 3, 5, 11, 209, 1281
Offset: 1
For k = 3, k^k + k^2 + 3*k + 2 = 47 and 47 is prime.
A357056
Integers k such that k^k + k^2 + 2*k + 1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 9, 10, 13, 15, 24
Offset: 1
If k = 2, then k^k + k^2 + k*2 + 1 = 2^2 + 2^2 + 2*2 + 1 = 13, which is prime.
Showing 1-6 of 6 results.
Comments