cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059304 a(n) = 2^n * (2*n)! / (n!)^2.

Original entry on oeis.org

1, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400
Offset: 0

Views

Author

Henry Bottomley, Jan 25 2001

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (0,1), and two kinds of steps (1,0). - Joerg Arndt, Jul 01 2011
The convolution square root of this sequence is A004981. - T. D. Noe, Jun 11 2002
Also main diagonal of array: T(i,1)=2^(i-1), T(1,j)=1, T(i,j) = T(i,j-1) + 2*T(i-1,j). - Benoit Cloitre, Feb 26 2003
The Hankel transform (see A001906 for definition) of this sequence with interpolated zeros(1, 0, 4, 0, 24, 0, 160, 0, 1120, ...) = is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
The Hankel transform of this sequence gives A103488. - Philippe Deléham, Dec 02 2007
Equals the central column of the triangle A038207. - Zerinvary Lajos, Dec 08 2007
Equals number of permutations whose reverse shares the same recording tableau in the Robinson-Schensted correspondence with n=(k-1)/2 for k odd. - Dang-Son Nguyen, Jul 02 2024
Number of ternary strings of length 2*n that have the same number of 0's as the combined number of 1's and 2's. For example, a(2)=24 since the strings of length 4 are the 6 permutations of 0011, the 12 permutations of 0012, and the 6 permutations of 0022. - Enrique Navarrete, Jul 30 2025

Crossrefs

Diagonal of A013609.
Column k=0 of A067001.

Programs

  • Magma
    [2^n*Binomial(2*n,n): n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
    
  • Maple
    seq(binomial(2*n,n)*2^n,n=0..19); # Zerinvary Lajos, Dec 08 2007
  • Mathematica
    Table[2^n Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Dec 16 2014 *)
  • PARI
    {a(n)=if(n<0, 0, 2^n*(2*n)!/n!^2)} /* Michael Somos, Jan 31 2007 */
    
  • PARI
    { for (n = 0, 200, write("b059304.txt", n, " ", 2^n * (2*n)! / n!^2); ) } \\ Harry J. Smith, Jun 25 2009
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[1, 0], [1, 0], [0, 1]]; /* note the double [1, 0] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • SageMath
    def A059304(n): return pow(2,n)*binomial(2*n,n)
    print([A059304(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025

Formula

a(n) = 2^n * C(2*n,n).
D-finite with recurrence a(n) = 4*(2-1/n)*a(n-1).
a(n) = A000079(n)*A000984(n)
G.f.: 1/sqrt(1-8*x) - T. D. Noe, Jun 11 2002
E.g.f.: exp(4*x)*BesselI(0, 4*x). - Vladeta Jovovic, Aug 20 2003
a(n) = A038207(n,n). - Joerg Arndt, Jul 01 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+1)/(4*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - 4*x/(4*x + (k+1)^2/(2*k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: Q(0)/(1+2*sqrt(x)), where Q(k) = 1 + 2*sqrt(x)/(1 - 2*sqrt(x)*(2*k+1)/(2*sqrt(x)*(2*k+1) + (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
O.g.f.: hypergeom([1/2], [], 8*x). - Peter Luschny, Oct 08 2015
a(n) = Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)*binomial(3*n-2*k,n)* binomial(n+k,n). - Peter Bala, Aug 04 2016
a(n) ~ 8^n/sqrt(Pi*n). - Ilya Gutkovskiy, Aug 04 2016
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 8/7 + 8*sqrt(7)*arcsin(1/sqrt(8))/49.
Sum_{n>=0} (-1)^n/a(n) = (8/27)*(3 - arcsinh(1/sqrt(8))). (End)
a(n) = Sum_{k = n..2*n} binomial(2*n,k)*binomial(k,n). In general, for m >= 1, Sum_{k = n..m*n} binomial(m*n,k)*binomial(k,n) = 2^((m-1)*n)*binomial(m*n,n). - Peter Bala, Mar 25 2023
Conjecture: a(n) = Sum_{0 <= j, k <= n} binomial(n, j)*binomial(n, k)* binomial(k+j, n). - Peter Bala, Jul 16 2024