cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086871 Row sums of A059450.

Original entry on oeis.org

1, 2, 10, 58, 370, 2514, 17850, 130890, 983650, 7536418, 58648810, 462306266, 3683602130, 29620138994, 240059315610, 1958940281322, 16081662931650, 132723191430210, 1100568370427850, 9164925012016506, 76612776253995570
Offset: 0

Views

Author

N. J. A. Sloane, Sep 16 2003

Keywords

Comments

Hankel transform is A165928. - Paul Barry, Sep 30 2009
Number of skew Dyck paths of semilength n with the down steps coming in two colors. - David Scambler, Jun 21 2013

Examples

			G.f. = 1 + 2*x + 10*x^2 + 58*x^3 + 370*x^4 + 2514*x^5 + 17850*x^6 + 130890*x^7 + ...
		

Programs

  • Mathematica
    Table[SeriesCoefficient[2/(1+Sqrt[(1-9*x)/(1-x)]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 / (1 + sqrt((1 - 9*x) / (1 - x) + x * O(x^n))), n))}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    {a(n) = if( n<1, n==0, n++; 2 * polcoeff( serreverse( x * (1 - 4*x) / (1 - 3*x) + x * O(x^n)), n))}; /* Michael Somos, Mar 06 2004 */

Formula

a(n) = 2*A059231(n), if n>0.
G.f.: (1 - x - sqrt((1 - x) * (1 - 9*x))) / (4*x) = 2 / (1 + sqrt((1 - 9*x) / (1 - x))) =: y satisfies 0 = (1 - x) * (1 - y) + 2*x*y^2. - Michael Somos, Mar 06 2004
Moment representation: a(n) = (1/(4*Pi))*Integral_{x=1..9} x^n*sqrt(-x^2+10x-9)/x+(1/2)*0^n. - Paul Barry, Sep 30 2009
D-finite with recurrence Recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - 9*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 3^(2*n+1)/(2*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(2*x) - 1/2 + G(0) where G(k) = 1 - 1/(x + x/(1 + 1/G(k+1) )) ; (continued fraction,3-step). - Sergei N. Gladkovskii, Nov 29 2012

Extensions

More terms from Ray Chandler, Sep 17 2003

A086866 Third column of A059450.

Original entry on oeis.org

0, 0, 5, 17, 50, 136, 352, 880, 2144, 5120, 12032, 27904, 64000, 145408, 327680, 733184, 1630208, 3604480, 7929856, 17367040, 37879808, 82313216, 178257920, 384827392, 828375040, 1778384896, 3808428032, 8136949760, 17347641344
Offset: 0

Views

Author

N. J. A. Sloane, Sep 16 2003

Keywords

Programs

  • Mathematica
    LinearRecurrence[{6,-12,8},{0,0,5,17,50},30] (* Harvey P. Dale, Jun 13 2016 *)

Formula

For n>1, a(n) = (n^2+9n-2)*2^(n-4). - Ralf Stephan, May 10 2004

Extensions

More terms from Ray Chandler, Sep 17 2003

A368773 Antidiagonal sums of A059450.

Original entry on oeis.org

1, 1, 3, 7, 21, 53, 159, 419, 1257, 3401, 10203, 28095, 84285, 235005, 705015, 1984155, 5952465, 16873745, 50621235, 144327287, 432981861, 1240296773, 3720890319, 10700364691, 32101094073, 92619680089, 277859040267, 803956981807, 2411870945421, 6995553520653, 20986660561959, 61001041404555
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2024

Keywords

Crossrefs

Cf. A059450.

Programs

  • Maple
    A368773 := proc(n)
        add(A059450(n-j,j), j=0..floor(n/2)) ;
    end proc:
    seq(A368773(n),n=0..40) ; # R. J. Mathar, Mar 25 2024
  • PARI
    N=32;  M=matrix(N+1, N+1);  M[1,1] = 1;
    T(n,k)= return( M[n+1,k+1] );
    { \\ A059450
     for (n=1, N,
      for (k=0, n,
        v = sum(y=0, n-1, T(y, k) ); \\ vert sum from top
        h = sum(y=0, n-1, T(n, y) ); \\ horiz sum from left
        s = v + h;
        M[ n+1, k+1 ] = s;
        );
    ); }
    \\ antidiagonal sums:
    for (n=0, N, my(r=n,c=0, s=0); while( c<=r, s+=T(r,c); r-=1; c+=1 ); print1(s,", "));

Formula

Apparent g.f.: (-b-sqrt(b^2-4*a*c))/(2*a) where a=(6*x^2 - 2*x), b=(-3*x^2 + 4*x - 1), and c=(-x + 1). [determined with Pari's seralgdep()]
Conjecture: D-finite with recurrence +(n+1)*a(n) +3*(-1)*a(n-1) +(-10*n+11)*a(n-2) +3*a(n-3) +9*(n-4)*a(n-4)=0. - R. J. Mathar, Mar 25 2024

A059231 Number of different lattice paths running from (0,0) to (n,0) using steps from S = {(k,k) or (k,-k): k positive integer} that never go below the x-axis.

Original entry on oeis.org

1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, 3768209, 29324405, 231153133, 1841801065, 14810069497, 120029657805, 979470140661, 8040831465825, 66361595715105, 550284185213925, 4582462506008253, 38306388126997785, 321327658068506121, 2703925940081270205
Offset: 0

Views

Author

Wenjin Woan, Jan 20 2001

Keywords

Comments

If y = x*A(x) then 4*y^2 - (1 + 3*x)*y + x = 0 and x = y*(1 - 4*y) / (1 - 3*y). - Michael Somos, Sep 28 2003
a(n) = A059450(n, n). - Michael Somos, Mar 06 2004
The Hankel transform of this sequence is 4^binomial(n+1,2). - Philippe Deléham, Oct 29 2007
a(n) is the number of Schroder paths of semilength n in which there are no (2,0)-steps at level 0 and at a higher level they come in 3 colors. Example: a(2)=5 because we have UDUD, UUDD, UBD, UGD, and URD, where U=(1,1), D=(1,-1), while B, G, and R are, respectively, blue, green, and red (2,0)-steps. - Emeric Deutsch, May 02 2011
Shifts left when INVERT transform applied four times. - Benedict W. J. Irwin, Feb 02 2016

Examples

			a(3) = 29 since the top row of Q^2 = (5, 8, 16, 0, 0, 0, ...), and 5 + 8 + 16 = 29.
		

Crossrefs

Row sums of A086873.
Column k=2 of A227578. - Alois P. Heinz, Jul 17 2013

Programs

  • Maple
    gf := (1+3*x-sqrt(9*x^2-10*x+1))/(8*x): s := series(gf, x, 100): for i from 0 to 50 do printf(`%d,`,coeff(s, x, i)) od:
    A059231_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+4*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A059231_list(20); # Peter Luschny, May 19 2011
  • Mathematica
    Join[{1},Table[-I 3^n/2LegendreP[n,-1,5/3],{n,40}]] (* Harvey P. Dale, Jun 09 2011 *)
    Table[Hypergeometric2F1[-n, 1 - n, 2, 4], {n, 0, 22}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x - sqrt(1 - 10*x + 9*x^2 + x^2 * O(x^n))) / (8*x), n))}; /* Michael Somos, Sep 28 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, n++; polcoeff( serreverse( x * (1 - 4*x) / (1 - 3*x) + x * O(x^n)), n))}; /* Michael Somos, Sep 28 2003 */
    
  • Sage
    # Algorithm of L. Seidel (1877)
    def A059231_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; b = False; h = 1
        for i in range(2*n) :
            if b :
                for k in range(1, h, 1) : D[k] += 2*D[k+1]
            else :
                for k in range(h, 0, -1) : D[k] += 2*D[k-1]
                h += 1
            b = not b
            if b : R.append(D[1])
        return R
    A059231_list(23)  # Peter Luschny, Oct 19 2012

Formula

a(n) = Sum_{k=0..n} 4^k*N(n, k) where N(n, k) = (1/n)*binomial(n, k)*binomial(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 10 2003
a(n) = 3^n/2*LegendreP(n, -1, 5/3). - Vladeta Jovovic, Sep 17 2003
G.f.: (1 + 3*x - sqrt(1 - 10*x + 9*x^2)) / (8*x) = 2 / (1 + 3*x + sqrt(1 - 10*x + 9*x^2)). - Michael Somos, Sep 28 2003
a(n) = Sum_{k=0..n} A088617(n, k)*4^k*(-3)^(n-k). - Philippe Deléham, Jan 21 2004
With offset 1: a(1)=1, a(n) = -3*a(n-1) + 4*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
D-finite with recurrence a(n) = (5(2n-1)a(n-1) - 9(n-2)a(n-2))/(n+1) for n>=2; a(0)=a(1)=1. - Emeric Deutsch, Mar 20 2004
Moment representation: a(n)=(1/(8*Pi))*Int(x^n*sqrt(-x^2+10x-9)/x,x,1,9)+(3/4)*0^n. - Paul Barry, Sep 30 2009
a(n) = upper left term in M^n, M = the production matrix:
1, 1
4, 4, 4
1, 1, 1, 1
4, 4, 4, 4, 4
1, 1, 1, 1, 1, 1
... - Gary W. Adamson, Jul 08 2011
a(n) is the sum of top row terms of Q^(n-1), where Q = the following infinite square production matrix:
1, 4, 0, 0, 0, ...
1, 1, 4, 0, 0, ...
1, 1, 1, 4, 0, ...
1, 1, 1, 1, 4, ...
... - Gary W. Adamson, Aug 23 2011
G.f.: (1+3*x-sqrt(9*x^2-10*x+1))/(8*x)=(1+3*x -G(0))/(4*x) ; G(k)= 1+x*3-x*4/G(k+1); (continued fraction, 1-step ). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ sqrt(2)*3^(2*n+1)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2012
a(n) = A127846(n) for n>0. - Philippe Deléham, Apr 03 2013
0 = a(n)*(+81*a(n+1) - 225*a(n+2) + 36*a(n+3)) + a(n+1)*(+45*a(n+1) + 82*a(n+2) - 25*a(n+3)) + a(n+2)*(+5*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Aug 25 2014
G.f.: 1/(1 - x/(1 - 4*x/(1 - x/(1 - 4*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017

A279212 Fill an array by antidiagonals upwards; in the top left cell enter a(0)=1; thereafter, in the n-th cell, enter the sum of the entries of those earlier cells that can be seen from that cell.

Original entry on oeis.org

1, 1, 2, 2, 6, 11, 4, 15, 39, 72, 8, 37, 119, 293, 543, 16, 88, 330, 976, 2364, 4403, 32, 204, 870, 2944, 8373, 20072, 37527, 64, 464, 2209, 8334, 26683, 74150, 176609, 331072, 128, 1040, 5454, 22579, 79534, 246035, 673156, 1595909, 2997466, 256, 2304, 13176, 59185, 226106, 762221, 2303159, 6231191, 14721429, 27690124
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2016

Keywords

Comments

"That can be seen from" means "that are on the same row, column, diagonal, or antidiagonal as".
Inspired by A279967.
Conjecture: Every column has a finite number of odd entries, and every row and diagonal have an infinite number of odd entries. - Peter Kagey, Mar 28 2020. The conjecture about columns is true, see that attached pdf file from Alec Jones.
The "look" keyword refers to Peter Kagey's bitmap. - N. J. A. Sloane, Mar 29 2020
The number of sequences of queen moves from (1, 1) to (n, k) in the first quadrant moving only up, right, diagonally up-right, or diagonally up-left. - Peter Kagey, Apr 12 2020
Column 0 gives A011782. In the column 1, the only powers of 2 occur at positions A233328(k) with value a(k(k+1)/2 + 1), k >=1 (see A335903). Conjecture: Those are the only multiple occurrences of numbers greater than 1 in this sequence (checked through the first 2000 antidiagonals). - Hartmut F. W. Hoft, Jun 29 2020

Examples

			The array begins:
i/j|  0    1    2     3     4      5      6       7       8
-------------------------------------------------------------
0  |  1    2   11    72   543   4403  37527  331072 2997466 ...
1  |  1    6   39   293  2364  20072 176609 1595909 ...
2  |  2   15  119   976  8373  74150 673156 ...
3  |  4   37  330  2944 26683 246035 ...
4  |  8   88  870  8334 79534 ...
5  | 16  204 2209 22579 ...
6  | 32  464 5454 ...
7  | 64 1040 ...
8  |128 ...
  ...
For example, when we get to the antidiagonal that reads 4, 15, 39, ..., the reason for the 39 is that from that cell we can see one cell that has been filled in above it (containing 11), one cell to the northwest (2), two cells to the west (1, 6), and two to the southwest (4, 15), for a total of a(8) = 39.
The next pair of duplicates greater than 2 is 2^20 = 1048576 = a(154) = a(231), located in antidiagonals 17 = A233328(2) and 21, respectively. For additional duplicate numbers in this sequence see A335903.  - _Hartmut F. W. Hoft_, Jun 29 2020
		

Crossrefs

Cf. A064642 is analogous if a cell can only "see" its immediate neighbors.
See A280026, A280027 for similar sequences based on a spiral.

Programs

  • Mathematica
    s[0, 0] = 1; s[i_, j_] := s[i, j] = Sum[s[k, j], {k, 0, i-1}] + Sum[s[i, k], {k, 0, j-1}] + Sum[s[i+j-k, k], {k, 0, j-1}] + Sum[s[i-k-1, j-k-1], {k, 0, Min[i, j] - 1}]
    aDiag[m_] := Map[s[m-#, #]&, Range[0, m]]
    a279212[n_] := Flatten[Map[aDiag, Range[0, n]]]
    a279212[9] (* data - 10 antidiagonals;  Hartmut F. W. Hoft, Jun 29 2020 *)

Formula

T(0, 0) = 1; T(i, j) = Sum_{k=0..i-1} T(k, j) + Sum_{k=0..j-1} T(i, k) + Sum_{k=0..j-1} T(i+j-k, k) + Sum_{k=0..min(i, j)-1} T(i-k-1, j-k-1), with recursion upwards along antidiagonals. - Hartmut F. W. Hoft, Jun 29 2020

A334016 Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only right, diagonal up-right, and diagonal up-left moves.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 4, 10, 21, 35, 8, 25, 65, 139, 237, 16, 60, 179, 451, 978, 1684, 32, 140, 470, 1337, 3339, 7239, 12557, 64, 320, 1189, 3725, 10325, 25559, 55423, 96605, 128, 720, 2926, 9958, 30018, 81716, 200922, 435550, 761938, 256, 1600, 7048, 25802, 83518
Offset: 1

Views

Author

Peter Kagey, Apr 12 2020

Keywords

Examples

			Table begins:
n\k|   1    2     3      4       5        6         7          8
---+------------------------------------------------------------
  1|   1    1     6     35     237     1684     12557      96605
  2|   1    4    21    139     978     7239     55423     435550
  3|   2   10    65    451    3339    25559    200922    1611624
  4|   4   25   179   1337   10325    81716    658918    5394051
  5|   8   60   470   3725   30018   245220   2027447   16935981
  6|  16  140  1189   9958   83518   703635   5961973   50811786
  7|  32  320  2926  25802  224831  1951587  16938814  147261146
  8|  64  720  7048  65241  589701  5269220  46826316  415175289
For example, the T(2,2) = 4 valid sequences of moves from (1,1) to (2,2) are:
(1,1) -> (2,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (3,1) -> (2,2),
(1,1) -> (2,2), and
(1,1) -> (3,1) -> (2,2).
		

Crossrefs

Cf. A035002 (up, right), A059450 (right, up-left), A132439 (up, right, up-right), A279212 (up, right, up-right, up-left), A334017 (up, right, up-left).
A071945 is the analog for king moves. For both king and queen moves, A094727 is the length of the longest sequence of moves.

Formula

T(n,k) = Sum_{i=1..k-1} T(n+i, k-i) + Sum_{i=1..min(n,k)-1} T(n-i, k-i) + Sum_{i=1..n-1} T(n-i, k).

A334017 Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only up, right, and diagonal up-left moves.

Original entry on oeis.org

1, 1, 2, 2, 5, 10, 4, 13, 33, 63, 8, 32, 98, 240, 454, 16, 76, 269, 777, 1871, 3539, 32, 176, 702, 2295, 6420, 15314, 29008, 64, 400, 1768, 6393, 19970, 54758, 129825, 246255, 128, 896, 4336, 17088, 58342, 176971, 478662, 1129967, 2145722, 256, 1984, 10416
Offset: 1

Views

Author

Peter Kagey, Apr 12 2020

Keywords

Comments

First row is A175962.

Examples

			Table begins:
n\k|  1   2     3      4       5        6         7          8
---+----------------------------------------------------------
  1|  1   2    10     63     454     3539     29008     246255
  2|  1   5    33    240    1871    15314    129825    1129967
  3|  2  13    98    777    6420    54758    478662    4266102
  4|  4  32   269   2295   19970   176971   1593093   14532881
  5|  8  76   702   6393   58342   536080   4965056   46345046
  6| 16 176  1768  17088  163041  1550809  14765863  140982374
  7| 32 400  4336  44280  440602  4332221  42373370  413689403
  8| 64 896 10416 111984 1159580 11771312 118190333 1179448443
For example, the T(2,2) = 5 sequences of permissible queen's moves from (1,1) to (2,2) are:
(1,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (2,2),
(1,1) -> (2,1) -> (3,1) -> (2,2), and
(1,1) -> (3,1) -> (2,2).
		

Crossrefs

Cf. A175962.
Cf. A035002 (up, right), A059450 (right, up-left), A132439 (up, right, up-right), A279212 (up, right, up-left), A334016 (right, up-right, up-left).
A033877 is the analog for king moves. For both king and queen moves, A094727 is the length of the longest sequence of moves.
Showing 1-7 of 7 results.