cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A118185 Triangle T(n,k) = 4^(k*(n-k)) for n>=k>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 16, 16, 1, 1, 64, 256, 64, 1, 1, 256, 4096, 4096, 256, 1, 1, 1024, 65536, 262144, 65536, 1024, 1, 1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1, 1, 16384, 16777216, 1073741824, 4294967296, 1073741824, 16777216, 16384, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2006

Keywords

Comments

For any column vector C, the matrix product of T*C transforms the g.f. of C: Sum_{n>=0} c(n)*x^n into the g.f.: Sum_{n>=0} c(n)*x^n/(1-4^n*x).
Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character. For example, the matrix inverse is defined by [T^-1](n,k) = A118188(n-k)*T(n,k); also, the matrix log is given by [log(T)](n,k) = A118189(n-k)*T(n,k).

Examples

			A(x,y) = 1/(1-xy) + x/(1-4xy) + x^2/(1-16xy) + x^3/(1-64xy) + ...
Triangle begins:
  1;
  1,    1;
  1,    4,       1;
  1,   16,      16,        1;
  1,   64,     256,       64,        1;
  1,  256,    4096,     4096,      256,       1;
  1, 1024,   65536,   262144,    65536,    1024,    1;
  1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1; ...
The matrix inverse T^-1 starts:
        1;
       -1,      1;
        3,     -4,       1;
      -33,     48,     -16,     1;
     1407,  -2112,     768,   -64,    1;
  -237057, 360192, -135168, 12288, -256, 1; ...
where [T^-1](n,k) = A118188(n-k)*4^(k*(n-k)).
		

Crossrefs

Cf. A118186 (row sums), A118187 (antidiagonal sums), A118188, A118189.
Cf. A117401 (m=0), A118180 (m=1), this sequence (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).
T(2n,n) gives A060757.

Programs

  • Magma
    [4^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
    
  • Mathematica
    Table[4^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 29 2021 *)
  • PARI
    T(n, k)=if(n
    				
  • Sage
    flatten([[4^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n/(1-4^n*x*y).
G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,4*y).
T(n,k) = (1/n)*( 4^(n-k)*k*T(n-1,k-1) + 4^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 2. - G. C. Greubel, Jun 29 2021

A285388 a(n) = numerator of ((1/n) * Sum_{k=0..n^2-1} binomial(2k,k)/4^k).

Original entry on oeis.org

1, 35, 36465, 300540195, 79006629023595, 331884405207627584403, 22292910726608249789889125025, 11975573020964041433067793888190275875, 411646257111422564507234009694940786177843149765, 56592821660064550728377610673427602421565368547133335525825
Offset: 1

Views

Author

Ralf Steiner, Apr 18 2017

Keywords

Comments

Editorial comment: This sequence arose from Ralf Steiner's attempt to prove Legendre's conjecture that there is a prime between N^2 and (N+1)^2 for all N. - N. J. A. Sloane, May 01 2017

Crossrefs

Cf. A000079, A000265, A056220, A060757, A201555, A285389 (denominators), A285406, A280655 (similar), A190732 (2/sqrt(Pi)), A285738 (greatest prime factor), A285717, A285730, A285786, A286264, A000290 (n^2), A056220 (2*n^2 -1), A286127 (sum a(n-1)/a(n)).

Programs

  • Magma
    [Numerator( n*(n^2+1)*Catalan(n^2)/2^(2*n^2-1) ): n in [1..21]]; // G. C. Greubel, Dec 11 2021
    
  • Mathematica
    Table[Numerator[Sum[Binomial[2k,k]/4^k,{k,0,n^2-1}]/n],{n,1,10}]
    Numerator[Table[2^(1-2 n^2) n Binomial[2 n^2,n^2],{n,1,10}]] (* Ralf Steiner, Apr 22 2017 *)
  • PARI
    A285388(n) = numerator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)); \\ Antti Karttunen, Apr 27 2017
    
  • PARI
    a(n) = m=n*binomial(2*n^2, n^2);m>>valuation(m,2) \\ David A. Corneth, Apr 27 2017
    
  • Python
    from sympy import binomial, Integer
    def a(n): return (Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).numerator # Indranil Ghosh, Apr 27 2017
    
  • Sage
    [numerator( n*(n^2+1)*catalan_number(n^2)/2^(2*n^2-1) ) for n in (1..20)] # G. C. Greubel, Dec 11 2021

Formula

a(n) is numerator of n*binomial(2 n^2, n^2)/2^(2*n^2 - 1). - Ralf Steiner, Apr 26 2017
a(n) = numerator(n*A201555(n) / (A060757(n)/2)) = n*A201555(n) / 2^(A285717(n)) = A000265(n*A201555(n)). [Using Ralf Steiner's formula and A285717(n) <= A056220(n), cf. A285406.] - Antti Karttunen, Apr 27 2017
Limit_{i->oo} a(i)*A285389(i+1)/(a(i+1)*A285389(i)) = 1. - Ralf Steiner, May 03 2017

Extensions

Edited (including the removal of the author's claim that this leads to a proof of the Legendre conjecture) by N. J. A. Sloane, May 01 2017
Formula section edited by M. F. Hasler, May 02 2017
Edited by N. J. A. Sloane, May 10 2017

A302174 Smallest solution x of x^n + y^(n+1) = z^(n+2), x, y, z >= 1.

Original entry on oeis.org

1, 2, 27, 256, 472392, 262144, 13759414272, 4294967296, 4057816381784064
Offset: 0

Views

Author

Jacques Tramu, Apr 07 2018

Keywords

Comments

From M. F. Hasler, Apr 13 2018: (Start)
Proofs for the upper limits given in the formula section:
For odd n = 2k-1, x = 2^(2*k^2) yields a solution with x^(2k-1) = y^(2k) = 1/2*z^(2k+1), y = 2^(k(2k-1)) and z = 2^(2k(k-1)+1), because 2*k^2*(2k-1) + 1 = (2k+1)*(2k(k-1)+1).
For even n = 2k, x = 2^(k*(2k+1))*3^(2k+2) yields a solution, with y = 2^(2*k^2)*3^(2k+1) and z = 2^(2*k^2-k+1)*3^(2k), because for the exponents of 3, (2k+1)^2 = (2k+2)2k + 1 and the factor 1+3 = 2^2 adds 2 to the (identical) exponent of 2 in x^(2k) and y^(2k+1), to factor as 2*k^2(2k+1) + 2 = (2k+2)(k(2k-1)+1). (End)

Examples

			1^0 + 3^1 = 2^2, therefore a(0) = 1.
2^1 + 5^2 = 3^3, so a(1) = 2. (No solution can have x = 1 because z^3 - 1 = (z - 1)(z^2 + z + 1) cannot be a square: if a = z - 1, then z^2 + z + 1 = a^2 + 3a + 3 is congruent to 3 modulo any factor of a, and a = 3b yields z^3 - 1 = 9*b*(3*b^2 + 3b + 1), the last factor being congruent to 1 modulo any factor of b, and cannot be a square.)
27^2 + 18^3 = 9^4, so a(2) = 27.
256^3 + 64^4 = 32^5, so a(3) = 256.
472392^4 + 52488^5 = 8748^6, so a(4) = 472392.
		

Crossrefs

Cf. A001105 (2*k^2), A060757 (4^k^2 = 2^(2k^2)), A000244 (3^k).
Conjectured to be a subsequence of A003586 (2^i*3^j).
Cf. A300564, A300565, A300566, A300567, A300568 (z^4 = x^2 + y^3, ..., z^8 = x^6 + y^7).

Formula

For odd n, a(n) <= 2^((n+1)^2/2); for even n, a(n) <= 2^(n*(n+1)/2)*3^(n+2).
We may conjecture that, for n > 4, a(n) is given by these upper limits.

Extensions

Extended to a(0) = 1 by M. F. Hasler, Apr 13 2018

A076782 a(n) = 10^(n^2).

Original entry on oeis.org

1, 10, 10000, 1000000000, 10000000000000000, 10000000000000000000000000, 1000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000000000000000000, 1000000000000000000000000000000000000000000000000000000000000000000000000000000000
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over an alphabet of size 10.
The 10th term of this sequence is the googol (10^100).
The term in position 10^50 (sqrt(googol)) is the googolplex (10^googol).
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over an alphabet of size k.

Crossrefs

Programs

A155207 G.f.: A(x) = exp( Sum_{n>=1} 4^(n^2) * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 4, 136, 87904, 1074100576, 225184288253824, 787061981348092400896, 45273238870711805132010916864, 42535296046210357883346895894694749696, 649556283428320264374891976653586736162144180224
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.

Examples

			G.f.: A(x) = 1 + 4*x + 136*x^2 + 87904*x^3 + 1074100576*x^4 +...
log(A(x)) = 4*x + 4^4*x^2/2 + 4^9*x^3/3 + 4^16*x^4/4 + 4^25*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,4^(m^2)*x^m/m)+x*O(x^n)),n)}

Formula

G.f. satisfies: A'(x)/A(x) = 4 + 64*x*A'(16*x)/A(16*x). - Paul D. Hanna, Nov 15 2022
a(n) ~ 4^(n^2)/n. - Vaclav Kotesovec, Oct 31 2024

A076781 a(n) = 6^(n^2).

Original entry on oeis.org

1, 6, 1296, 10077696, 2821109907456, 28430288029929701376, 10314424798490535546171949056, 134713546244127343440523266742756048896, 63340286662973277706162286946811886609896461828096
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over an alphabet of size 6.
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over Z/kZ.

Crossrefs

Programs

Extensions

More terms from Philippe Deléham, Nov 24 2007
a(5) corrected by Vincenzo Librandi, May 30 2011

A076783 a(n) = 11^(n^2).

Original entry on oeis.org

1, 11, 14641, 2357947691, 45949729863572161, 108347059433883722041830251, 30912680532870672635673352936887453361, 1067189571633593786424240872639621090354383081702091, 4457915684525902395869512133369841539490161434991526715513934826241
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over GF(11).
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over GF(k).

Crossrefs

Programs

Extensions

More terms from Rick L. Shepherd, May 06 2008

A135292 a(n) = 5^n * 4^(n^2).

Original entry on oeis.org

1, 20, 6400, 32768000, 2684354560000, 3518437208883200000, 73786976294838206464000000, 24758800785707605497982484480000000, 132922799578491587290380706028034457600000000
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2007

Keywords

Comments

Hankel transform of A130976 .

Programs

Formula

a(n)=5^n*4^(n^2)=A000351(n)*A060757(n).

A135398 a(n) = 3^n * 4^(n^2).

Original entry on oeis.org

1, 12, 2304, 7077888, 347892350976, 273593677362757632, 3442605166011971360784384, 693087965674784425268322477539328, 2232592609368277258783200799359831235362816
Offset: 0

Views

Author

Philippe Deléham, Dec 11 2007

Keywords

Comments

Hankel transform of A132863 .

Programs

Formula

a(n) = 3^n*4^(n^2) = A000244(n)*A060757(n).

A377881 Number of ordered pairs of real n X n (0,1)-matrices that satisfy the equation A + B = A * B.

Original entry on oeis.org

1, 1, 2, 72, 3760, 210042
Offset: 0

Views

Author

Stuart E Anderson, Nov 10 2024

Keywords

Comments

Matrix multiplication of A and B is commutative here.
If A + B = A * B then (A - I)*(B - I) = I, where I is the identity matrix. For integer matrices, the determinant of (A-I) must be +-1 and its inverse gives B-I. - Andrew Howroyd, Nov 12 2024

Examples

			One of the 72 solutions in 3x3 (1,0) matrices:
  A = {{0,0,0},{0,1,1},{1,1,1}},
  B = {{0,0,0},{1,1,1},{0,1,1}}
  A + B = {{0,0,0},{1,2,2},{1,2,2}}
  A * B = {{0,0,0},{1,2,2},{1,2,2}}
		

Crossrefs

Cf. A060757.

Programs

  • PARI
    \\ See comments. Uses Gray code to generate A-I (called A here).
    a(n)= { my(Id=matid(n), A=-Id); sum(f=0, 2^(n^2)-1, if(f, my(t=valuation(f,2), i=t\n+1, j=t%n+1); A[i,j]=if(i==j,-1,1)-A[i,j]); if(abs(matdet(A))==1, my(B=A^(-1)+Id); vecmin(B)>=0 && vecmax(B)<=1 && denominator(B)==1)) } \\ Andrew Howroyd, Nov 12 2024

Extensions

a(4) corrected and a(5) from Andrew Howroyd, Nov 12 2024
Showing 1-10 of 12 results. Next