A118185
Triangle T(n,k) = 4^(k*(n-k)) for n>=k>=0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 16, 16, 1, 1, 64, 256, 64, 1, 1, 256, 4096, 4096, 256, 1, 1, 1024, 65536, 262144, 65536, 1024, 1, 1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1, 1, 16384, 16777216, 1073741824, 4294967296, 1073741824, 16777216, 16384, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-4xy) + x^2/(1-16xy) + x^3/(1-64xy) + ...
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 16, 16, 1;
1, 64, 256, 64, 1;
1, 256, 4096, 4096, 256, 1;
1, 1024, 65536, 262144, 65536, 1024, 1;
1, 4096, 1048576, 16777216, 16777216, 1048576, 4096, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
3, -4, 1;
-33, 48, -16, 1;
1407, -2112, 768, -64, 1;
-237057, 360192, -135168, 12288, -256, 1; ...
where [T^-1](n,k) = A118188(n-k)*4^(k*(n-k)).
-
[4^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
-
Table[4^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 29 2021 *)
-
T(n, k)=if(n
-
flatten([[4^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
A285388
a(n) = numerator of ((1/n) * Sum_{k=0..n^2-1} binomial(2k,k)/4^k).
Original entry on oeis.org
1, 35, 36465, 300540195, 79006629023595, 331884405207627584403, 22292910726608249789889125025, 11975573020964041433067793888190275875, 411646257111422564507234009694940786177843149765, 56592821660064550728377610673427602421565368547133335525825
Offset: 1
Cf.
A000079,
A000265,
A056220,
A060757,
A201555,
A285389 (denominators),
A285406,
A280655 (similar),
A190732 (2/sqrt(Pi)),
A285738 (greatest prime factor),
A285717,
A285730,
A285786,
A286264,
A000290 (n^2),
A056220 (2*n^2 -1),
A286127 (sum a(n-1)/a(n)).
-
[Numerator( n*(n^2+1)*Catalan(n^2)/2^(2*n^2-1) ): n in [1..21]]; // G. C. Greubel, Dec 11 2021
-
Table[Numerator[Sum[Binomial[2k,k]/4^k,{k,0,n^2-1}]/n],{n,1,10}]
Numerator[Table[2^(1-2 n^2) n Binomial[2 n^2,n^2],{n,1,10}]] (* Ralf Steiner, Apr 22 2017 *)
-
A285388(n) = numerator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)); \\ Antti Karttunen, Apr 27 2017
-
a(n) = m=n*binomial(2*n^2, n^2);m>>valuation(m,2) \\ David A. Corneth, Apr 27 2017
-
from sympy import binomial, Integer
def a(n): return (Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).numerator # Indranil Ghosh, Apr 27 2017
-
[numerator( n*(n^2+1)*catalan_number(n^2)/2^(2*n^2-1) ) for n in (1..20)] # G. C. Greubel, Dec 11 2021
Edited (including the removal of the author's claim that this leads to a proof of the Legendre conjecture) by
N. J. A. Sloane, May 01 2017
A302174
Smallest solution x of x^n + y^(n+1) = z^(n+2), x, y, z >= 1.
Original entry on oeis.org
1, 2, 27, 256, 472392, 262144, 13759414272, 4294967296, 4057816381784064
Offset: 0
1^0 + 3^1 = 2^2, therefore a(0) = 1.
2^1 + 5^2 = 3^3, so a(1) = 2. (No solution can have x = 1 because z^3 - 1 = (z - 1)(z^2 + z + 1) cannot be a square: if a = z - 1, then z^2 + z + 1 = a^2 + 3a + 3 is congruent to 3 modulo any factor of a, and a = 3b yields z^3 - 1 = 9*b*(3*b^2 + 3b + 1), the last factor being congruent to 1 modulo any factor of b, and cannot be a square.)
27^2 + 18^3 = 9^4, so a(2) = 27.
256^3 + 64^4 = 32^5, so a(3) = 256.
472392^4 + 52488^5 = 8748^6, so a(4) = 472392.
Conjectured to be a subsequence of
A003586 (2^i*3^j).
A076782
a(n) = 10^(n^2).
Original entry on oeis.org
1, 10, 10000, 1000000000, 10000000000000000, 10000000000000000000000000, 1000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000000000000000000, 1000000000000000000000000000000000000000000000000000000000000000000000000000000000
Offset: 0
Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002
A155207
G.f.: A(x) = exp( Sum_{n>=1} 4^(n^2) * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 4, 136, 87904, 1074100576, 225184288253824, 787061981348092400896, 45273238870711805132010916864, 42535296046210357883346895894694749696, 649556283428320264374891976653586736162144180224
Offset: 0
G.f.: A(x) = 1 + 4*x + 136*x^2 + 87904*x^3 + 1074100576*x^4 +...
log(A(x)) = 4*x + 4^4*x^2/2 + 4^9*x^3/3 + 4^16*x^4/4 + 4^25*x^5/5 +...
A076781
a(n) = 6^(n^2).
Original entry on oeis.org
1, 6, 1296, 10077696, 2821109907456, 28430288029929701376, 10314424798490535546171949056, 134713546244127343440523266742756048896, 63340286662973277706162286946811886609896461828096
Offset: 0
Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002
A076783
a(n) = 11^(n^2).
Original entry on oeis.org
1, 11, 14641, 2357947691, 45949729863572161, 108347059433883722041830251, 30912680532870672635673352936887453361, 1067189571633593786424240872639621090354383081702091, 4457915684525902395869512133369841539490161434991526715513934826241
Offset: 0
Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002
A135292
a(n) = 5^n * 4^(n^2).
Original entry on oeis.org
1, 20, 6400, 32768000, 2684354560000, 3518437208883200000, 73786976294838206464000000, 24758800785707605497982484480000000, 132922799578491587290380706028034457600000000
Offset: 0
A135398
a(n) = 3^n * 4^(n^2).
Original entry on oeis.org
1, 12, 2304, 7077888, 347892350976, 273593677362757632, 3442605166011971360784384, 693087965674784425268322477539328, 2232592609368277258783200799359831235362816
Offset: 0
A377881
Number of ordered pairs of real n X n (0,1)-matrices that satisfy the equation A + B = A * B.
Original entry on oeis.org
1, 1, 2, 72, 3760, 210042
Offset: 0
One of the 72 solutions in 3x3 (1,0) matrices:
A = {{0,0,0},{0,1,1},{1,1,1}},
B = {{0,0,0},{1,1,1},{0,1,1}}
A + B = {{0,0,0},{1,2,2},{1,2,2}}
A * B = {{0,0,0},{1,2,2},{1,2,2}}
-
\\ See comments. Uses Gray code to generate A-I (called A here).
a(n)= { my(Id=matid(n), A=-Id); sum(f=0, 2^(n^2)-1, if(f, my(t=valuation(f,2), i=t\n+1, j=t%n+1); A[i,j]=if(i==j,-1,1)-A[i,j]); if(abs(matdet(A))==1, my(B=A^(-1)+Id); vecmin(B)>=0 && vecmax(B)<=1 && denominator(B)==1)) } \\ Andrew Howroyd, Nov 12 2024
Showing 1-10 of 12 results.
Comments