A060900
Number of walks of length n on square lattice, starting at origin, staying on points with x >= 0, y <= x.
Original entry on oeis.org
1, 2, 7, 21, 78, 260, 988, 3458, 13300, 47880, 185535, 680295, 2649570, 9841260, 38470380, 144263925, 565514586, 2136388436, 8392954570, 31893227366, 125515281892, 479240167224, 1888770070824, 7240285271492, 28569774314536, 109883747363600, 434040802086220
Offset: 0
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017; https://specfun.inria.fr/bostan/HDR.pdf
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, 7th Séminaire Lotharingien de Combinatoire, Ellwangen, March 23-25, 2015.
-
b:= proc(n, x, y) option remember;
`if`(x<0 or y>x, 0, `if`(n=0, 1, add(add(
b(n-1, x+i, y+j), j=[-1, 1]), i=[-1, 1])))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 30 2015
-
(* Conjectural *) a[0]=1; a[n_] := a[n] = If[EvenQ[n], (4*(3*n+1)*a[n-1])/ (3*n+2), (4*n*a[n-1])/(n+1)]; Table[a[n], {n, 0, 26}]
(* or, from 1st g.f. *) s = (HypergeometricPFQ[{-1/12, 1/4}, {2/3}, -64*x* (4*x+1)^2/(4*x-1)^4]-1)/(2*x) + O[x]^27; CoefficientList[s, x](* Jean-François Alcover, Nov 30 2015 *)
A060897
Number of walks of length n on square lattice, starting at origin, staying in first and third quadrants.
Original entry on oeis.org
1, 4, 12, 44, 144, 528, 1808, 6676, 23536, 87568, 315136, 1180680, 4314560, 16263896, 60138816, 227899484, 850600944, 3238194560, 12177384544, 46542879384, 176110444736, 675431779856, 2568878867200, 9882068082112, 37747540858240, 145593279888736, 558190182662144
Offset: 0
-
\\ here B is A005566 and C is aerated A005568 as g.f.'s.
B(n)={sum(n=0, n, x^n*binomial(n, n\2)*binomial(n+1, (n+1)\2), O(x*x^n))}
C(n)={sum(n=0, (n+1)\2, x^(2*n)*binomial(2*n,n)*binomial(2*n+2,n+1)/((n+1)*(n+2)), O(x*x^n))}
seq(n) = {Vec( 1 + 2*(B(n)-1)/(2-C(n)) )} \\ Andrew Howroyd, Jan 05 2023
A060899
Number of walks of length n on square lattice, starting at origin, staying on points with x+y >= 0.
Original entry on oeis.org
1, 2, 8, 24, 96, 320, 1280, 4480, 17920, 64512, 258048, 946176, 3784704, 14057472, 56229888, 210862080, 843448320, 3186360320, 12745441280, 48432676864, 193730707456, 739699064832, 2958796259328, 11342052327424
Offset: 0
- Harry J. Smith, Table of n, a(n) for n=0..200
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Math Overflow, Combinatorial proof for the number of lattice paths that return to the axis only at times that are a multiple of 4, 2012.
-
Table[2^n Binomial[n,Floor[n/2]],{n,0,30}] (* Harvey P. Dale, Oct 15 2017 *)
-
{ for (n=0, 200, write("b060899.txt", n, " ", 2^n*binomial(n, n\2)); ) } \\ Harry J. Smith, Jul 14 2009
A260153
Number of walks of length n on the square lattice (with steps N, E, S, W) that start at (0,0) and avoid the West quadrant {(i,j): i < -|j|}.
Original entry on oeis.org
1, 3, 12, 41, 164, 590, 2360, 8715, 34860, 130776, 523104, 1983212, 7932848, 30303416, 121213664, 465673065, 1862692260, 7187760140, 28751040560, 111338982436, 445355929744, 1729672999418, 6918691997672, 26936111629934, 107744446519736, 420338301077100
Offset: 0
For n=1, the three possible walks are N, E, S.
Cf.
A060898 for walks avoiding the negative quadrant rather than the West one,
A260154.
-
b:= proc(n,i,j) option remember;
if i < -abs(j) then 0
elif n=0 then 1
else b(n-1,i-1,j)+
b(n-1,i+1,j)+
b(n-1,i,j-1)+
b(n-1,i,j+1)
fi
end:
a:= n-> b(n,0,0);
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2015
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 3, 12, 41][n+1],
((4*(2*n-5))*(12*n^4-16*n^3-6*n^2+10*n+3) *a(n-1)
+(16*(2*n-5))*(2*n+1)*(6*n^4-24*n^3+28*n^2-8*n-3) *a(n-2)
-(64*(2*n+1))*(12*n^4-80*n^3+186*n^2-178*n+63) *a(n-3)
-(256*(n-1))*(2*n+1)*(2*n-1)*(3*n-7)*(n-3)^2 *a(n-4))/
((2*n-3)*(2*n-5)*(n-1)*(3*n+1)*(n+1)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2015
-
b[n_, i_, j_] := b[n, i, j] = Which[i < -Abs[j], 0, n == 0, 1, True, b[n-1, i-1, j] + b[n-1, i+1, j] + b[n-1, i, j-1] + b[n-1, i, j+1]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)
With[{n = 10}, CoefficientList[Series[
-1/(4*t) + (1+4*t)*((sc+Sqrt[1+sc^2])/Sqrt[3-48*t^2] - k/(2*Pi))/(3*t)
/. sc -> Pi*Sqrt[3]*Normal[Sum[(-1)^p/(1 + q^(-2*p) + q^(2*p)), {p,-n,n}] + O[q]^(2*n)]/(2*k*Sqrt[1-16*t^2])
/. q -> EllipticNomeQ[16*t^2] /. k -> EllipticK[16*t^2],
{t,0,4*n}], t]] (* Timothy Budd, Oct 23 2016 *)
A260155
Number of walks of length 2n on the square lattice that start and end at (0,0) and avoid the negative quadrant.
Original entry on oeis.org
1, 4, 32, 318, 3530, 41944, 522010, 6719018, 88726840, 1195527822, 16373466714, 227280520316, 3190715296368, 45226324937400, 646392346047930, 9305481272839662, 134815491199174476, 1964195875748858812, 28761433275110249932, 423052415434610432816
Offset: 0
When n=1 the four walks are NS, EW, SN, WE.
Cf.
A060898 for walks starting from (0,0) but in which the final point is not prescribed.
-
f[x_, n_] := x Pochhammer[x+1, n-1];
a[n_] := 4 16^n/3^5 (3^4 f[1/2, n] f[1/2, n + 1]/(f[2, n] f[2, n + 1]) + 4 (24n^2 + 60n + 29) f[1/2, n] f[7/6, n]/(f[2, n + 1] f[4/3, n + 1]) - 2 (12n^2 + 30n + 5) f[1/2, n] f[5/6, n]/(f[2, n + 1] f[5/3, n + 1]));
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 25 2018 *)
Showing 1-5 of 5 results.
Comments