A062138
Coefficient triangle of generalized Laguerre polynomials n!*L(n,5,x)(rising powers of x).
Original entry on oeis.org
1, 6, -1, 42, -14, 1, 336, -168, 24, -1, 3024, -2016, 432, -36, 1, 30240, -25200, 7200, -900, 50, -1, 332640, -332640, 118800, -19800, 1650, -66, 1, 3991680, -4656960, 1995840, -415800, 46200, -2772, 84, -1, 51891840, -69189120
Offset: 0
Triangle begins:
{1};
{6, -1};
{42, -14, 1};
{336, -168, 24, -1};
...
2!*L(2, 5, x) = 42-14*x+x^2.
- A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
-
Flatten[Table[((-1)^m)*n!*Binomial[n+5,n-m]/m!,{n,0,8},{m,0,n}]] (* Indranil Ghosh, Feb 24 2017 *)
-
tabl(nn) = {for (n=0, nn, for (m=0, n, print1(((-1)^m)*n!*binomial(n+5, n-m)/m!, ", "); ); print(); ); } \\ Indranil Ghosh, Feb 24 2017
-
row(n) = Vecrev(n!*pollaguerre(n, 5)); \\ Michel Marcus, Feb 06 2021
-
import math
f=math.factorial
def C(n, r):return f(n)//f(r)//f(n-r)
i=-1
for n in range(26):
for m in range(n+1):
i += 1
print(str(i)+" "+str(((-1)**m)*f(n)*C(n+5, n-m)//f(m))) # Indranil Ghosh, Feb 24 2017
A086885
Lower triangular matrix, read by rows: T(i,j) = number of ways i seats can be occupied by any number k (0<=k<=j<=i) of persons.
Original entry on oeis.org
2, 3, 7, 4, 13, 34, 5, 21, 73, 209, 6, 31, 136, 501, 1546, 7, 43, 229, 1045, 4051, 13327, 8, 57, 358, 1961, 9276, 37633, 130922, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114, 11, 111, 1021, 8501
Offset: 1
One person:
T(1,1)=a(1)=2: 0,1 (seat empty or occupied);
T(2,1)=a(2)=3: 00,10,01 (both seats empty, left seat occupied, right seat occupied).
Two persons:
T(2,2)=a(3)=7: 00,10,01,20,02,12,21;
T(3,2)=a(5)=13: 000,100,010,001,200,020,002,120,102,012,210,201,021.
Triangle starts:
2;
3 7;
4 13 34;
5 21 73 209;
6 31 136 501 1546;
...
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)
- Ed Jones, Number of seatings, discussion in newsgroup sci.math, Aug 9, 2003.
- R. J. Mathar, The number of binary nxm matrices with at most k 1's in each row or columns, Table 1.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Luca Zecchini, Tobias Bleifuß, Giovanni Simonini, Sonia Bergamaschi, and Felix Naumann, Determining the Largest Overlap between Tables, Proc. ACM Manag. Data (SIGMOD 2024) Vol. 2, No. 1, Art. 48. See p. 48:6.
- Index entries for sequences related to Laguerre polynomials
-
[Factorial(k)*Evaluate(LaguerrePolynomial(k, n-k), -1): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
-
A086885 := proc(n,k)
add( binomial(n,j)*binomial(k,j)*j!,j=0..min(n,k)) ;
end proc: # R. J. Mathar, Dec 19 2014
-
Table[Table[Sum[k! Binomial[n, k] Binomial[j, k], {k, 0, j}], {j, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Jul 09 2015 *)
Table[m! LaguerreL[m, n - m, -1], {n, 10}, {m, n}] // Flatten (* Eric W. Weisstein, Apr 25 2017 *)
-
T(i, j) = j!*pollaguerre(j, i-j, -1); \\ Michel Marcus, Feb 23 2021
-
flatten([[factorial(k)*gen_laguerre(k, n-k, -1) for k in [1..n]] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
A143498
Triangle of unsigned 3-Lah numbers.
Original entry on oeis.org
1, 6, 1, 42, 14, 1, 336, 168, 24, 1, 3024, 2016, 432, 36, 1, 30240, 25200, 7200, 900, 50, 1, 332640, 332640, 118800, 19800, 1650, 66, 1, 3991680, 4656960, 1995840, 415800, 46200, 2772, 84, 1, 51891840, 69189120, 34594560, 8648640, 1201200, 96096, 4368
Offset: 3
Triangle begins
n\k|......3......4......5......6......7......8
==============================================
3..|......1
4..|......6......1
5..|.....42.....14......1
6..|....336....168.....24......1
7..|...3024...2016....432.....36......1
8..|..30240..25200...7200....900.....50......1
...
T(4,3) = 6. The partitions of {1,2,3,4} into 3 ordered lists, such that the elements 1, 2 and 3 lie in different lists, are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {2}{3}{1,4} and {2}{3}{4,1}.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- G. Nyul, G. Rácz, The r-Lah numbers, Discrete Mathematics, 338 (2015), 1660-1666.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- M. Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014.
Cf.
A001725 (column 3),
A007318,
A008275,
A008277,
A062138,
A062148 -
A062152 (column 4 to column 8),
A062191 (alt. row sums),
A062192 (row sums),
A105278 (unsigned Lah numbers),
A143492,
A143495,
A143497,
A143499.
-
/* As triangle */ [[Factorial(n-3)/Factorial(k-3)*Binomial(n+2, k+2): k in [3..n]]: n in [3.. 15]]; // Vincenzo Librandi, Nov 27 2018
-
with combinat: T := (n, k) -> (n-3)!/(k-3)!*binomial(n+2,k+2): for n from 3 to 12 do seq(T(n, k), k = 3..n) end do;
-
T[n_, k_] := (n-3)!/(k-3)!*Binomial[n+2, k+2]; Table[T[n, k], {n, 3, 10}, {k, 3, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)
A216294
Triangular array read by rows: T(n,k) is the number of partial permutations of {1,2,...,n} that have exactly k cycles, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 13, 14, 6, 1, 73, 84, 41, 10, 1, 501, 609, 325, 95, 15, 1, 4051, 5155, 2944, 965, 190, 21, 1, 37633, 49790, 30023, 10689, 2415, 343, 28, 1, 394353, 539616, 340402, 129220, 32179, 5348, 574, 36, 1, 4596553, 6478521, 4246842, 1698374, 455511, 84567, 10794, 906, 45, 1
Offset: 0
1;
1, 1;
3, 3, 1;
13, 14, 6, 1;
73, 84, 41, 10, 1;
501, 609, 325, 95, 15, 1;
-
gf := exp(x / (1 - x)) / (1 - x)^y:
serx := series(gf, x, 10): poly := n -> simplify(coeff(serx, x, n)):
seq(print(seq(n!*coeff(poly(n), y, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 23 2023
-
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[Exp[ x/(1-x)]/(1-x)^y,{x,0,nn}],{x,y}]]//Flatten
A293985
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-x))/(1-x)^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 13, 1, 4, 13, 34, 73, 1, 5, 21, 73, 209, 501, 1, 6, 31, 136, 501, 1546, 4051, 1, 7, 43, 229, 1045, 4051, 13327, 37633, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 394353, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 4596553
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ... A000012;
1, 2, 3, 4, 5, ... A000027;
3, 7, 13, 21, 31, ... A002061;
13, 34, 73, 136, 229, ... A135859;
73, 209, 501, 1045, 1961, ...
501, 1546, 4051, 9276, 19081, ...
Antidiagonal rows begin as:
1;
1, 1;
1, 2, 3;
1, 3, 7, 13;
1, 4, 13, 34, 73;
1, 5, 21, 73, 209, 501; - _G. C. Greubel_, Mar 09 2021
-
function t(n,k)
if n eq 0 then return 1;
else return Factorial(n-1)*(&+[(j+k)*t(n-j,k)/Factorial(n-j): j in [1..n]]);
end if; return t;
end function;
[t(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
-
t[n_, k_]:= t[n, k]= If[n==0, 1, (n-1)!*Sum[(j+k)*t[n-j,k]/(n-j)!, {j,n}]];
T[n_,k_]:= t[k,n-k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
-
@CachedFunction
def t(n,k): return 1 if n==0 else factorial(n-1)*sum( (j+k)*t(n-j,k)/factorial(n-j) for j in (1..n) )
def T(n,k): return t(k,n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
Showing 1-5 of 5 results.
Comments