cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A014197 Number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B39, pp. 144-146.
  • Joe Roberts, Lure of The Integers, The Mathematical Association of America, 1992, entry 32, page 182.

Crossrefs

Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.

Programs

  • GAP
    a := function(n)
    local S, T, R, max, i, k, r;
    S:=[];
    for i in DivisorsInt(n)+1 do
        if IsPrime(i)=true then
            S:=Concatenation(S,[i]);
        fi;
    od;
    T:=[];
    for k in [1..Size(S)] do
        T:=Concatenation(T,[S[k]/(S[k]-1)]);
    od;
    max := n*Product(T);
    R:=[];
    for r in [1..Int(max)] do
        if Phi(r)=n then
            R:=Concatenation(R,[r]);
        fi;
    od;
    return Size(R);
    end; # Miles Englezou, Oct 22 2024
  • Magma
    [#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
  • Mathematica
    a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *)
    With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A014197(n,m=1) = { n==1 && return(1+(m<2)); my(p,q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0,valuation(q=n\d,p=d+1), A014197(q\p^i,p))))} \\ M. F. Hasler, Oct 05 2009
    
  • PARI
    a(n) = invphiNum(n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
    
  • Python
    from sympy import totient, divisors, isprime, prod
    def a(m):
        if m == 1: return 2
        if m % 2: return 0
        X = (x + 1 for x in divisors(m))
        nmax=m*prod(i/(i - 1) for i in X if isprime(i))
        n=m
        k=0
        while n<=nmax:
            if totient(n)==m:k+=1
            n+=1
        return k
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
    

Formula

Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Limit_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
= Euler transform of A280712 = g.f. of A280611.
(End)
a(A000010(n)) = A066412(n). - Antti Karttunen, Jul 18 2017
From Antti Karttunen, Dec 04 2018: (Start)
a(A000079(n)) = A058321(n).
a(A000142(n)) = A055506(n).
a(A017545(n)) = A063667(n).
a(n) = Sum_{d|n} A008683(n/d)*A070633(d).
a(n) = A056239(A322310(n)).
(End)

A067319 Numbers n such that phi(n)^phi(n)+1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12
Offset: 1

Views

Author

Labos Elemer, Jan 15 2002

Keywords

Comments

It is conjectured that the sequence of Fermat primes (A019434) is complete; if so then this sequence is complete:
Suppose that x is a positive integer for which x^x+1 is prime. If x has an odd prime factor p, then x^x + 1 = (x^(x/p))^p + 1 is divisible by x^(x/p) + 1, so it is not prime. So x must be a power of 2. Hence x^x is also a power of 2, so x^x+1 is a Fermat prime.
If there are no Fermat primes beyond the known ones (as is widely believed), then x must be 1, 2, or 4. Letting x=phi(n), it is easy to see that n must be one of the numbers listed. - Dean Hickerson, Feb 11 2002

Examples

			Cases n=1-12 are based on the primes 2, 5, 257.
		

Crossrefs

Programs

  • Mathematica
    ephiQ[n_]:=Module[{eph=EulerPhi[n]},PrimeQ[eph^eph+1]]; Select[ Range[ 20],ephiQ] (* Harvey P. Dale, Feb 23 2021 *)
  • PARI
    isok(n) = isprime(eulerphi(n)^eulerphi(n) + 1); \\ Michel Marcus, Oct 07 2013

A071617 a(n) = phi(p)^phi(p) where p = prime(n).

Original entry on oeis.org

1, 4, 256, 46656, 10000000000, 8916100448256, 18446744073709551616, 39346408075296537575424, 341427877364219557396646723584, 33145523113253374862572728253364605812736, 205891132094649000000000000000000000000000000
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (p-> (p-1)^(p-1))(ithprime(n)):
    seq(a(n), n=1..11);  # Alois P. Heinz, Jul 30 2024
  • PARI
    a(n) = my(q=eulerphi(prime(n))); q^q; \\ Michel Marcus, Jul 30 2024

Formula

a(n) = A063439(A000040(n)).
a(n) = A000312(A006093(n)).

Extensions

a(11) from Sean A. Irvine, Jul 30 2024

A319383 Numbers k such that phi(k)^phi(k) == 1 (mod k^2).

Original entry on oeis.org

1, 2, 19043, 289627, 6674419, 49865347, 185014655
Offset: 1

Views

Author

Altug Alkan, Sep 18 2018

Keywords

Comments

All terms are cyclic numbers (A003277).
The next term, if it exists, is > 10^10. - Vaclav Kotesovec, Oct 23 2018
a(8) > 10^12, if it exists. - Giovanni Resta, Oct 25 2018

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], Divisible[EulerPhi[#]^EulerPhi[#] - 1, #^2] &] (* Vaclav Kotesovec, Oct 21 2018 *)
    Join[{1},Select[Range[1851*10^5],With[{c=EulerPhi[#]},PowerMod[c,c,#^2] == 1&]]] (* Harvey P. Dale, Oct 09 2020 *)
  • PARI
    isok(n) = Mod(eulerphi(n), n^2)^eulerphi(n)==1;
    for(n=1, 10000000, if(isok(n),print1(n, ", ")))
Showing 1-4 of 4 results.