cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064169 Numerator - denominator in n-th harmonic number, 1 + 1/2 + 1/3 + ... + 1/n.

Original entry on oeis.org

0, 1, 5, 13, 77, 29, 223, 481, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 10190221, 197698279, 40315631, 13684885, 13920029, 325333835, 990874363, 25128807667, 25472027467, 232222818803, 235091155703, 6897956948587, 6975593267347
Offset: 1

Views

Author

Leroy Quet, Sep 19 2001

Keywords

Comments

The numerator and denominator in the definition have no common factors greater than 1. p divides a(p-2) for prime p > 2. - Alexander Adamchuk, Jun 09 2006
It appears that a(n) = numerator((3*(HarmonicNumber(n) - 1)) / (n*(n^2 + 6*n + 11))), except for n = 5, 82, 115, and 383 (tested to 20000). - Gary Detlefs, Jul 20 2011
From Amiram Eldar and Thomas Ordowski, Jul 27 2019: (Start)
Conjecture: for n > 2, n divides a(n-2) if and only if n is a prime. Checked up to 20000.
Max Alekseyev proved (in priv. commun.) that there are no primes p > 3 such that p^2 divides a(p-2). (End)

Examples

			The 3rd harmonic number is 11/6. So a(3) = 11 - 6 = 5.
		

Crossrefs

Programs

  • GAP
    List([1..35], n-> NumeratorRat(Sum([0..n-2], k-> 2/(k+2))) ); # G. C. Greubel, Jul 27 2019
    
  • Magma
    [Numerator(a)-Denominator(a) where a is HarmonicNumber(n): n in [1..35]]; // Marius A. Burtea, Aug 03 2019
    
  • Maple
    s := n -> add(1/i, i=2..n): a := n -> numer(s(n)):
    seq(a(n), n=1..30); # Zerinvary Lajos, Mar 28 2007
  • Mathematica
    A064169[n_]:= (s = Sum[1/k, {k, n}]; Numerator[s] - Denominator[s]); Table[A064169[n], {n, 35}]
    Numerator[Table[Sum[1/k, {k, 2, n}], {n, 35}]] (* Alexander Adamchuk, Jun 09 2006 *)
    Numerator[#] - Denominator[#] &/@ HarmonicNumber[Range[35]] (* Harvey P. Dale, Apr 25 2016 *)
    Numerator[Accumulate[1/Range[2, 35]]] (* Alonso del Arte, Nov 21 2018 *)
    a[n_] := Numerator[PolyGamma[1 + n] + EulerGamma - 1];
    Table[a[n], {n, 1, 29}] (* Peter Luschny, Feb 19 2022 *)
  • PARI
    a(n) = my(h=sum(i=1, n, 1/i)); numerator(h)-denominator(h) \\ Felix Fröhlich, Jan 14 2019
    
  • Python
    from sympy import harmonic
    def A064169(n): return (lambda x: x.p - x.q)(harmonic(n)) # Chai Wah Wu, Sep 27 2021
  • Sage
    [numerator(harmonic_number(n)) - denominator(harmonic_number(n)) for n in (1..35)] # G. C. Greubel, Jul 27 2019
    

Formula

Numerator of (gamma + Psi(n+1) - 1). - Vladeta Jovovic, Aug 12 2002
From Alexander Adamchuk, Jun 09 2006: (Start)
a(n) = numerator of Sum_{k = 2..n} 1/k.
a(n) = A001008(n) - A002805(n).
a(n) = numerator of (the n-th harmonic number minus 1).
a(n) = numerator of A001008(n)/A002805(n) - 1. (End)
a(n) = numerator of A027612(n-1)/(A027611(n)*n^2*(n-1)!), n > 1. - Gary Detlefs, Aug 05 2011
a(n) = numerator(Sum_{k = 1..n-1} 1/(3*k + 3)). - Gary Detlefs, Sep 14 2011
a(n) = numerator(Sum_{k = 0..n-1} 2/(k+2)). - Gary Detlefs, Oct 06 2011
a(n) = numerator(Sum_{k = 1..n} frac(1/k)). - Michel Marcus, Sep 27 2021

Extensions

One more term from Robert G. Wilson v, Sep 28 2001
More terms from Vladeta Jovovic, Aug 12 2002