cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A067488 Powers of 2 with initial digit 1.

Original entry on oeis.org

1, 16, 128, 1024, 16384, 131072, 1048576, 16777216, 134217728, 1073741824, 17179869184, 137438953472, 1099511627776, 17592186044416, 140737488355328, 1125899906842624, 18014398509481984, 144115188075855872, 1152921504606846976, 18446744073709551616
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Comments

Also smallest n-digit power of 2.
For each range 10^(n-1) to 10^n-1 there exists exactly 1 power of 2 with first digit 1 (floor(log_10(a(n))) = n-1). As such, the density of this sequence relative to all powers of 2 (A000079) is log(2)/log(10) (0.301..., A007524), which is prototypical of Benford's Law. - Charles L. Hohn, Jul 23 2024

Crossrefs

Programs

Formula

a(n) = 2^ceiling((n-1)*log(10)/log(2)). - Benoit Cloitre, Aug 29 2002
From Charles L. Hohn, Jun 09 2024: (Start)
a(n) = 2^A067497(n-1).
A055642(a(n)) = n. (End)

A067483 Powers of 5 with initial digit 5.

Original entry on oeis.org

5, 59604644775390625, 582076609134674072265625, 5684341886080801486968994140625, 55511151231257827021181583404541015625, 542101086242752217003726400434970855712890625
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Comments

Each term also has final digit 5. - Muniru A Asiru, Oct 13 2018

Crossrefs

Subsequence of A000351 (powers of 5).
Similar entries with another digit: A067480 (2), A067481 (3), A067482 (4).

Programs

  • GAP
    k:=5;; Filtered(List([0..100],n->k^n),i->ListOfDigits(i)[1]=k); # Muniru A Asiru, Oct 06 2018
    
  • Mathematica
    Select[5^Range[70],First[IntegerDigits[#]]==5&]  (* Harvey P. Dale, Apr 01 2011 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (digits(p=5^n)[1] == 5, print1(p, ", ")););} \\ Michel Marcus, Oct 14 2018

Extensions

Edited by Frank Ellermann, Feb 11 2002
One more term from Harvey P. Dale, Apr 01 2011

A067497 Smallest k for which 2^k is n+1 decimal digits long, and equivalently numbers k such that 1 is the first digit of 2^k.

Original entry on oeis.org

0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40, 44, 47, 50, 54, 57, 60, 64, 67, 70, 74, 77, 80, 84, 87, 90, 94, 97, 100, 103, 107, 110, 113, 117, 120, 123, 127, 130, 133, 137, 140, 143, 147, 150, 153, 157, 160, 163, 167, 170, 173, 177, 180, 183, 187, 190, 193, 196
Offset: 0

Views

Author

Benoit Cloitre, Feb 22 2002

Keywords

Comments

The asymptotic density of this sequence is log_10(2) = 0.301029... (A007524). - Amiram Eldar, Jan 27 2021

Crossrefs

Programs

  • GAP
    Filtered([0..200],n->ListOfDigits(2^n)[1]=1); # Muniru A Asiru, Oct 22 2018
    
  • Mathematica
    a[n_] := Block[{k = 0}, While[ Floor[Log[10, 2^k] + 1] < n, k++ ]; k]; Table[ a[n], {n, 1, 61}]
    Table[Ceiling[n*Log[2, 10]], {n, 0, 59}] (* Jean-François Alcover, Jan 29 2014, after Vladeta Jovovic *)
  • PARI
    for(n=0,500, if(floor(2^n/10^(floor(n*log(2)/log(10))))==1,print1(n,", ")))
    
  • PARI
    a(n) = ceil(n*log(10)/log(2)); \\ Michel Marcus, May 13 2017
    
  • Python
    def A067497(n): return (10**n-1).bit_length() # Chai Wah Wu, Apr 02 2023
    
  • Sage
    [ceil(n*log(10)/log(2)) for n in range(0, 60)] # Stefano Spezia, Aug 31 2024

Formula

a(n) = ceiling(n*log_2(10)). - Vladeta Jovovic, Jun 20 2002
a(n) = log_2(A067488(n+1)). - Charles L. Hohn, Jun 09 2024

Extensions

Additional comments from Lekraj Beedassy, Jun 20 2002 and from Rick Shephard, Jun 27 2002

A067484 Powers of 6 with initial digit 6.

Original entry on oeis.org

6, 60466176, 609359740010496, 6140942214464815497216, 61886548790943213277031694336, 623673825204293256669089197883129856, 6285195213566005335561053533150026217291776, 63340286662973277706162286946811886609896461828096
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Comments

The geometric progression formula a(n)=10077696*a(n-1) does NOT hold if n=20, 40, 59, 79, 98, etc. - R. J. Mathar, Jun 24 2009

Crossrefs

Programs

  • GAP
    k:=6;; Filtered(List([0..80],n->k^n),i->ListOfDigits(i)[1]=k); # Muniru A Asiru, Oct 18 2018
  • Maple
    A067484 := proc(n) local p6,p,a ; if n = 1 then 6; else p6 := procname(n-1) ; ifactors(p6)[2] ; p := op(2,op(1,%)) ; for a from p+1 do p6 := 6^a ; convert(%,base,10) ; if op(-1,%) = 6 then RETURN(p6) ; fi; od: fi; end: # R. J. Mathar, Jun 24 2009
  • Mathematica
    Select[6^Range[100],First[IntegerDigits[#]]==6&] (* Harvey P. Dale, Aug 14 2018 *)

Extensions

More terms from Benoit Cloitre, Feb 22 2002
a(8) from Harvey P. Dale, Aug 14 2018
Offset changed to 1 by Muniru A Asiru, Oct 19 2018

A067485 Powers of 7 with initial digit 7.

Original entry on oeis.org

7, 79792266297612001, 7730993719707444524137094407, 749048330965186233494494102694564493649, 72574551534231909331741171093173785967490646405143
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Crossrefs

Programs

  • GAP
    Filtered(List([0..100],n->7^n),i->ListOfDigits(i)[1]=7); # Muniru A Asiru, Oct 22 2018
  • Mathematica
    Select[7^Range[80],First[IntegerDigits[#]]==7&] (* Harvey P. Dale, Apr 16 2013 *)

Extensions

More terms from Benoit Cloitre, Feb 22 2002

A067486 Powers of 8 with initial digit 8.

Original entry on oeis.org

8, 8589934592, 85070591730234615865843651857942052864, 842498333348457493583344221469363458551160763204392890034487820288, 8343699359066055009355553539724812947666814540455674882605631280555545803830627148527195652096
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Crossrefs

Programs

  • GAP
    Filtered(List([0..110],n->8^n),i->ListOfDigits(i)[1]=8); # Muniru A Asiru, Oct 22 2018
  • Mathematica
    Select[8^Range[150],First[IntegerDigits[#]]==8&]  (* Harvey P. Dale, Dec 26 2010 *)
  • PARI
    for(n=1,200, if(floor((8^n)/10^floor(log((8^n))/log(10)))==8,print1(8^n,",")))
    

Extensions

More terms from Benoit Cloitre, Feb 28 2002

A067487 Powers of 9 with initial digit 9.

Original entry on oeis.org

9, 984770902183611232881, 969773729787523602876821942164080815560161, 955004950796825236893190701774414011919935138974343129836853841, 940461086986004843694934910131056317906479029659199959555574885740211572136210345921
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Crossrefs

Programs

  • GAP
    Filtered(List([0..100],n->9^n),i->ListOfDigits(i)[1]=9); # Muniru A Asiru, Oct 21 2018
    
  • Magma
    [9^n: n in [1..100] | Intseq(9^n)[#Intseq(9^n)] eq 9]; // Vincenzo Librandi, Oct 22 2018
  • Mathematica
     Select[9^Range[100], First[IntegerDigits[#]]==9 &] (* Vincenzo Librandi, Oct 22 2018 *)

Extensions

More terms from Benoit Cloitre, Feb 28 2002

A067469 Numbers k such that 2 is the first digit of 2^k.

Original entry on oeis.org

1, 8, 11, 18, 21, 28, 31, 38, 41, 48, 51, 58, 61, 68, 71, 81, 91, 101, 104, 111, 114, 121, 124, 131, 134, 141, 144, 151, 154, 161, 164, 171, 174, 184, 194, 197, 204, 207, 214, 217, 224, 227, 234, 237, 244, 247, 254, 257, 264, 267, 277, 287, 297, 300, 307, 310
Offset: 1

Views

Author

Benoit Cloitre, Feb 22 2002

Keywords

Comments

The asymptotic density of this sequence is log_10(3/2) = 0.176091... (A154580 - 1). - Amiram Eldar, Jan 27 2021

Crossrefs

Programs

A067489 Powers of 3 with initial digit 1.

Original entry on oeis.org

1, 19683, 177147, 1594323, 14348907, 129140163, 1162261467, 10460353203, 1853020188851841, 16677181699666569, 150094635296999121, 1350851717672992089, 12157665459056928801, 109418989131512359209
Offset: 1

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Crossrefs

Programs

  • GAP
    Filtered(List([0..50],n->3^n),i->ListOfDigits(i)[1]=1); # Muniru A Asiru, Oct 22 2018
  • Mathematica
    Select[3^Range[0,5*10^6],First[IntegerDigits[#]]==1&] (* Harvey P. Dale, Oct 09 2015 *)

Extensions

Offset 1 from Michel Marcus, Oct 19 2018

A320859 Powers of 2 with initial digit 3.

Original entry on oeis.org

32, 32768, 33554432, 34359738368, 35184372088832, 36028797018963968, 36893488147419103232, 37778931862957161709568, 302231454903657293676544, 38685626227668133590597632, 309485009821345068724781056, 39614081257132168796771975168, 316912650057057350374175801344
Offset: 1

Views

Author

Muniru A Asiru, Oct 22 2018

Keywords

Crossrefs

Cf. A000079 (Powers of 2), A008952 (leading digit of 2^n).
Powers of 2 with initial digit k, (k = 1..4): A067488, A067480, this sequence, A320860.
Cf. A172404.

Programs

  • GAP
    Filtered(List([0..120],n->2^n),i->ListOfDigits(i)[1]=3);
    
  • Magma
    [2^n: n in [1..100] | Intseq(2^n)[#Intseq(2^n)] eq 3]; // G. C. Greubel, Oct 24 2018
    
  • Maple
    select(x->"3"=""||x[1],[2^n$n=0..120])[];
  • Mathematica
    Select[2^Range[0, 100], First[IntegerDigits[#]] == 3 &] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    lista(nn) = {for(n=1, nn, x = 2^n; if (digits(x=2^n)[1] == 3, print1(x, ", ")););} \\ Michel Marcus, Oct 25 2018

Formula

a(n) = 2^A172404(n).
Showing 1-10 of 22 results. Next