cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A041041 Denominators of continued fraction convergents to sqrt(26).

Original entry on oeis.org

1, 10, 101, 1020, 10301, 104030, 1050601, 10610040, 107151001, 1082120050, 10928351501, 110365635060, 1114584702101, 11256212656070, 113676711262801, 1148023325284080, 11593909964103601, 117087122966320090, 1182465139627304501, 11941738519239365100
Offset: 0

Views

Author

Keywords

Comments

Generalized Fibonacci sequence.
Sqrt(26) = 10/2 + 10/101 + 10/(101*10301) + 10/(10301*1050601) + ... - Gary W. Adamson, Jun 13 2008
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 10's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0, 1, ..., 10} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Bruno Berselli, May 03 2018: (Start)
Numbers k for which m*k^2 + (-1)^k is a perfect square:
m = 2: 0, 1, 2, 5, 12, 29, 70, 169, ... (A000129);
m = 3: 0, 4, 56, 780, 10864, 151316, ... (4*A007655);
m = 5: 0, 1, 4, 17, 72, 305, 1292, ... (A001076);
m = 6: 0, 2, 20, 198, 1960, 19402, ... (A001078);
m = 7: 0, 48, 12192, 3096720, ... (2*A175672);
m = 8: 0, 6, 204, 6930, 235416, ... (A082405);
m = 10: 0, 1, 6, 37, 228, 1405, 8658, ... (A005668);
m = 11: 0, 60, 23880, 9504180, ... [°];
m = 12: 0, 2, 28, 390, 5432, 75658, ... (A011944);
m = 13: 0, 5, 180, 6485, 233640, ... (5*A041613);
m = 14: 0, 4, 120, 3596, 107760, ... (A068204);
m = 15: 0, 8, 496, 30744, 1905632, ... [°];
m = 17: 0, 1, 8, 65, 528, 4289, 34840, ... (A041025);
m = 18: 0, 4, 136, 4620, 156944, ... (A202299);
m = 19: 0, 13260, 1532829480, ... [°];
m = 20: 0, 2, 36, 646, 11592, 208010, ... (A207832);
m = 21: 0, 12, 1320, 145188, ... (A174745);
m = 22: 0, 42, 16548, 6519870, ... (A174766);
m = 23: 0, 240, 552480, 1271808720, ... [°];
m = 24: 0, 10, 980, 96030, 9409960, ... (A168520);
m = 26: 0, 1, 10, 101, 1020, 10301, ... (this sequence);
m = 27: 0, 260, 702520, 1898208780, ... [°];
m = 28: 0, 24, 6096, 1548360, ... (A175672);
m = 29: 0, 13, 1820, 254813, 35675640, ... [°];
m = 30: 0, 2, 44, 966, 21208, 465610, ... (2*A077421), etc.
[°] apparently without related sequences in the OEIS.
(End)
From Michael A. Allen, Mar 12 2023: (Start)
Also called the 10-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 10 kinds of squares available. (End)

Crossrefs

Programs

  • Magma
    I:=[1,10]; [n le 2 select I[n] else 10*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
  • Maple
    seq(combinat:-fibonacci(n+1, 10), n=0..19); # Peter Luschny, May 04 2018
  • Mathematica
    Denominator[Convergents[Sqrt[26], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
    LinearRecurrence[{10,1}, {1,10}, 30] (* G. C. Greubel, Jan 24 2018 *)
  • PARI
    x='x+O('x^30); Vec(1/(1-10*x-x^2)) \\ G. C. Greubel, Jan 24 2018
    
  • Sage
    [lucas_number1(n,10,-1) for n in range(1, 19)] # Zerinvary Lajos, Apr 26 2009
    

Formula

G.f.: 1/(1 - 10*x - x^2).
a(n) = 10*a(n-1) + a(n-2), n>=1; a(-1):=0, a(0)=1.
a(n) = S(n, 10*i)*(-i)^n where i^2:=-1 and S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind. See A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = 5+sqrt(26), am = -1/ap = 5-sqrt(26).
a(n) = F(n+1, 10), the (n+1)-th Fibonacci polynomial evaluated at x=10. - T. D. Noe, Jan 19 2006
a(n) = Sum_{i=0..floor(n/2)} binomial(n-i,i)*10^(n-2*i). - Sergio Falcon, Sep 24 2007

Extensions

Extended by T. D. Noe, May 23 2011

A068203 Chebyshev T-polynomials T(n,15) with Diophantine property.

Original entry on oeis.org

1, 15, 449, 13455, 403201, 12082575, 362074049, 10850138895, 325142092801, 9743412645135, 291977237261249, 8749573705192335, 262195233918508801, 7857107443850071695, 235451028081583642049, 7055673735003659189775, 211434761022028192051201
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2002

Keywords

Comments

Let (x_n, y_n) be n-th solution to the Pell equation x^2 = 14*y^2 + 1. Sequence gives {x_n}.
Numbers n such that 14*(n^2-1) is a square. - Vincenzo Librandi, Aug 08 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 30xy + y^2 + 224 = 0. - Colin Barker, Feb 24 2014

Crossrefs

a(n)=sqrt(1 + 224*A097313(n-1)^2), n>=0. Cf. A068204.

Programs

  • Maple
    Digits := 1000: q := seq(floor(evalf(((15+4*sqrt(14))^n+(15-4*sqrt(14))^n)/2)+0.1), n=1..30);
  • Mathematica
    a[0] = 1; a[1] = 15; a[n_] := 30a[n-1] - a[n-2]; Table[a[n], {n,0,16}] (* or *) LinearRecurrence[{30,-1}, {1,15}, 17] (* Indranil Ghosh, Feb 18 2017 *)
  • Sage
    [lucas_number2(n,30,1)/2 for n in range(0,15)] # Zerinvary Lajos, Jun 27 2008

Formula

x_n + y_n*sqrt(14) = (x_1 + y_1*sqrt(14))^n.
a(n) = (-15/2-2*sqrt(14))*(-1/(-15-4*sqrt(14)))^n/(-15-4*sqrt(14))+(2*sqrt(14)-15/2)*(-1/(-15+4*sqrt(14)))^n/(-15+4*sqrt(14)). Recurrence: a(n) = 30*a(n-1)-a(n-2). G.f.: (1-15*x)/(1-30*x+x^2). - Vladeta Jovovic, Mar 25 2002
a(n) = T(n, 15)= (S(n, 30)-S(n-2, 30))/2 = S(n, 30)-15*S(n-1, 30) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 30)=A097313(n). - Wolfdieter Lang, Aug 31 2004
a(n) = sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*15)^(n-2*k), k=0..floor(n/2)), n>=1. - Wolfdieter Lang, Aug 31 2004
a(n) = cosh(2*n*arcsinh(sqrt(7))). - Herbert Kociemba, Apr 24 2008

Extensions

More terms from Sascha Kurz and Vladeta Jovovic, Mar 25 2002
Additional term from Colin Barker, Feb 24 2014

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021

A041021 Denominators of continued fraction convergents to sqrt(14).

Original entry on oeis.org

1, 1, 3, 4, 27, 31, 89, 120, 809, 929, 2667, 3596, 24243, 27839, 79921, 107760, 726481, 834241, 2394963, 3229204, 21770187, 24999391, 71768969, 96768360, 652379129, 749147489, 2150674107, 2899821596, 19549603683, 22449425279, 64448454241, 86897879520
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010471, A041020, A157878 (quadrisection), A068204 (quadrisection).

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[14],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*)
    Convergents[Sqrt[14],30]//Denominator (* or *) LinearRecurrence[{0,0,0,30,0,0,0,-1},{1,1,3,4,27,31,89,120},30] (* Harvey P. Dale, Aug 17 2024 *)

Formula

G.f.: (1+1*x+3*x^2+4*x^3-3*x^4+x^5-x^6)/(1-30*x^4+x^8). - Colin Barker, Jan 03 2012

A378908 Square array, read by descending antidiagonals, where each row n comprises the integers w >= 1 such that A000037(n)*w^2+4 is a square.

Original entry on oeis.org

4, 24, 2, 140, 8, 1, 816, 30, 3, 4, 4756, 112, 8, 40, 6, 27720, 418, 21, 396, 96, 2, 161564, 1560, 55, 3920, 1530, 12, 12, 941664, 5822, 144, 38804, 24384, 70, 456, 6, 5488420, 21728, 377, 384120, 388614, 408, 17316, 120, 1, 31988856, 81090, 987, 3802396
Offset: 1

Views

Author

Charles L. Hohn, Dec 10 2024

Keywords

Comments

Also, integers w >= 1 for each row n >= 1 such that z+(1/z) is an integer, where x = A000037(n), y = w*sqrt(x), and z = (y+ceiling(y))/2.
All terms of row n are positive integer multiples of T(n, 1).
Limit_{k->oo} T(n, k+1)/T(n, k) = (sqrt(b^2-4)+b)/2 where b=T(n, 2)/T(n, 1).

Examples

			n=row index; x=nonsquare integer of index n (A000037(n)):
 n  x    T(n, k)
------+---------------------------------------------------------------------
 1  2 |  4,   24,   140,     816,      4756,       27720,        161564, ...
 2  3 |  2,    8,    30,     112,       418,        1560,          5822, ...
 3  5 |  1,    3,     8,      21,        55,         144,           377, ...
 4  6 |  4,   40,   396,    3920,     38804,      384120,       3802396, ...
 5  7 |  6,   96,  1530,   24384,    388614,     6193440,      98706426, ...
 6  8 |  2,   12,    70,     408,      2378,       13860,         80782, ...
 7 10 | 12,  456, 17316,  657552,  24969660,   948189528,   36006232404, ...
 8 11 |  6,  120,  2394,   47760,    952806,    19008360,     379214394, ...
 9 12 |  1,    4,    15,      56,       209,         780,          2911, ...
10 13 |  3,   33,   360,    3927,     42837,      467280,       5097243, ...
11 14 |  8,  240,  7192,  215520,   6458408,   193536720,    5799643192, ...
12 15 |  2,   16,   126,     992,      7810,       61488,        484094, ...
13 17 | 16, 1056, 69680, 4597824, 303386704, 20018924640, 1320945639536, ...
14 18 |  8,  272,  9240,  313888,  10662952,   362226480,   12305037368, ...
...
		

Crossrefs

Programs

  • PARI
    row(n)={my(v=List()); for(t=3, oo, if((t^2-4)%x>0 || !issquare((t^2-4)/x), next); listput(v, sqrtint((t^2-4)/x)); break); listput(v, v[1]*sqrtint(v[1]^2*x+4)); while(#v<10, listput(v, v[#v]*(v[2]/v[1])-v[#v-1])); Vec(v)}
    for(n=1, 20, x=n+floor(1/2+sqrt(n)); print (n, " ", x, " ", row(n)))

Formula

For x = A000037(n) (nonsquare integer of index n):
If x is not the sum of 2 squares, then T(n, 1) = A048942(n); otherwise, T(n, 1) is a positive integer multiple of A048942(n).
For j in {-2, 1, 2, 4}, if x-j is a square (except 2-2=0^2 or 5-1=2^2), then T(n, 1) = (4/abs(j))*sqrt(x-j) and T(n, 2) = T(n, 1)^3/(4/abs(j)) + sign(j)*2*T(n, 1).
For j in {1, 4}, if x+j is a square, then T(n, 1) = 2/sqrt(4/j) and T(n, 2) = (4/j)*sqrt(x+j).
For k >= 2, T(n, k) = T(n, k-1)*sqrt(T(n, 1)^2*x+4) - [k>=3]*T(n, k-2).
T(n, 2) = Sum_{i=0..oo}(T(n, 1)^(2-2*i) * x^((1-2*i)/2) * A002420(i) * A033999(i)).
If T(n, 1) is even, then T(n, 2) = T(n, 1)*A180495(n); if T(n, 1) is odd and x is even, then T(n, 2) = T(n, 1)*sqrt(A180495(n)+2); if T(n, 1) and x are both odd, then T(n, 2) is a factor of T(n, 1)*A180495(n).
For k >= 3, T(n, k) = T(n, k-1)*(T(n, 2)/T(n, 1)) - T(n, k-2) = T(n, 1)*A298675(T(n, 2)/T(n, 1), k-1) + T(n, k-2) = sqrt((A298675(T(n, 2)/T(n, 1), k)^2-4)/x).
Showing 1-5 of 5 results.