cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A139321 First occurrence of n in A068307: least number k such that the number of decomposition of k into the sum of three primes is n.

Original entry on oeis.org

1, 6, 9, 15, 17, 21, 31, 27, 35, 33, 39, 41, 45, 47, 55, 51, 53, 57, 242, 63, 67, 65, 71, 476, 79, 81, 578, 85, 77, 83, 99, 572, 512, 89, 97, 95, 103, 111, 101, 692, 1040, 632, 115, 107, 782, 129, 121, 113, 902, 141, 119, 842, 992, 125, 133, 147, 1520, 131, 159, 145
Offset: 0

Views

Author

Robert G. Wilson v, Apr 13 2008

Keywords

Comments

Records (differs from A139322): 1, 6, 9, 15, 17, 21, 31, 35, 39, 41, 45, 47, 55, 57, 242, 476, 578, 692, 1040, 1520, 1898, 2162, 2480, 3536, 4004, 4034, 4526, 5456, 5918, 7010, 8804, 9740, 10106, 10262, 10412, 10622, 10772, 10952, 11462, 12362, 12452, 12512, 12560, 12662, 12902, ... .

Crossrefs

Cf. A000040, A068307. Records: A139322.

Programs

  • Mathematica
    f[n_] := Block[{c = 0, lmt = PrimePi@ Floor[n/2], p, q}, Do[p = Prime@ i; q = Prime@ j; r = n - p - q; If[ PrimeQ@ r && r >= p, c++ ], {i, lmt}, {j, i}]; c]; t = Table[0, {1000}]; Do[a = f@n; If[t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 10^6}]

A139322 Record values of n in A068307.

Original entry on oeis.org

1, 6, 9, 15, 17, 21, 27, 33, 39, 41, 45, 47, 51, 53, 57, 63, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 185, 191, 197, 203, 209, 215, 221, 227, 233, 239, 245, 251, 257, 269, 275, 277, 281, 287, 293, 299, 305, 311, 317
Offset: 0

Views

Author

Robert G. Wilson v, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, lmt = PrimePi@ Floor[n/2], p, q}, Do[p = Prime@ i; q = Prime@ j; r = n - p - q; If[ PrimeQ@ r && r >= p, c++ ], {i, lmt}, {j, i}]; c]; lst = {1}; Do[ If[f@n > f@lst[[ -1]], AppendTo[lst, n]], {n, 13450}]; lst

A061358 Number of ways of writing n = p+q with p, q primes and p >= q.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 3, 0, 3, 1, 3, 0, 2, 0, 3, 1, 2, 1, 4, 0, 4, 0, 2, 1, 3, 0, 4, 1, 3, 1, 4, 0, 5, 1, 4, 0, 3, 0, 5, 1, 3, 0, 4, 0, 6, 1, 3, 1, 5, 0, 6, 0, 2, 1, 5, 0, 6, 1, 5, 1, 5, 0, 7, 0, 4, 1, 5, 0, 8, 1, 5, 0, 4, 0, 9, 1, 4, 0, 5, 0, 7, 0, 3, 1, 6, 0, 8, 1, 5, 1
Offset: 0

Views

Author

Amarnath Murthy, Apr 28 2001

Keywords

Comments

For an odd number n, a(n) = 0 if n-2 is not a prime, otherwise a(n) = 1.
For n > 1, a(2n) is at least 1, according to Goldbach's conjecture.
a(A014092(n)) = 0; a(A014091(n)) > 0; a(A067187(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
Number of partitions of n into two primes.
Number of unordered ways of writing n as the sum of two primes.
a(2*n) = A068307(2*n+2). - Reinhard Zumkeller, Aug 08 2009
4*a(n) is the total number of divisors of all primes p and q such that n = p+q and p >= q. - Wesley Ivan Hurt, Mar 05 2016
Indices where a(n) = 0 correspond to A164376 UNION A025584. - Bill McEachen, Jan 31 2024

Examples

			a(22) = 3 because 22 can be written as 3+19, 5+17 and 11+11.
		

Crossrefs

Programs

  • Magma
    [#RestrictedPartitions(n,2,{p:p in PrimesUpTo(1000)}):n in [0..100] ] // Marius A. Burtea, Jan 19 2019
  • Maple
    g:=sum(sum(x^(ithprime(i)+ithprime(j)),i=1..j),j=1..30): gser:=series(g,x=0,110): seq(coeff(gser,x,n),n=0..105); # Emeric Deutsch, Apr 03 2006
  • Mathematica
    a[n_] := Length[Select[n - Prime[Range[PrimePi[n/2]]], PrimeQ]]; Table[a[n], {n, 0, 100}] (* Paul Abbott, Jan 11 2005 *)
    With[{nn=110},CoefficientList[Series[Sum[x^(Prime[i]+Prime[j]),{j,nn},{i,j}],{x,0,nn}],x]] (* Harvey P. Dale, Aug 17 2017 *)
    Table[Count[IntegerPartitions[n,{2}],?(AllTrue[#,PrimeQ]&)],{n,0,110}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Jul 03 2021 *)
  • PARI
    a(n)=my(s);forprime(q=2,n\2,s+=isprime(n-q));s \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from sympy import primerange, isprime, floor
    def a(n):
        s=0
        for q in primerange(2, n//2 + 1): s+=isprime(n - q)
        return s
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 30 2017
    

Formula

G.f.: Sum_{j>0} Sum_{i=1..j} x^(p(i)+p(j)), where p(k) is the k-th prime. - Emeric Deutsch, Apr 03 2006
A065577(n) = a(10^n).
From Wesley Ivan Hurt, Jan 04 2013: (Start)
a(n) = Sum_{i=1..floor(n/2)} A010051(i) * A010051(n-i).
a(n) = Sum_{i=1..floor(n/2)} floor((A010051(i) + A010051(n-i))/2). (End)
a(n) + A062610(n) + A062602(n) = A004526(n). - R. J. Mathar, Sep 10 2021
a(n) = Sum_{k=floor((n-1)^2/4)+1..floor(n^2/4)} c(A339399(2k-1)) * c(A339399(2k)), where c = A010051. - Wesley Ivan Hurt, Jan 19 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
Comments edited by Zak Seidov, May 28 2014

A259201 Number of partitions of n into ten primes.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 11, 14, 16, 18, 20, 25, 24, 31, 33, 38, 39, 48, 47, 59, 59, 69, 69, 87, 80, 102, 98, 118, 114, 143, 131, 168, 154, 191, 179, 227, 200, 261, 236, 297, 268, 344, 300, 396, 345, 442, 390, 509, 431, 576, 493, 641, 551, 729
Offset: 20

Views

Author

Doug Bell, Jun 20 2015

Keywords

Examples

			a(23) = 2 because there are 2 partitions of 23 into ten primes: [2,2,2,2,2,2,2,2,2,5] and [2,2,2,2,2,2,2,3,3,3].
		

Crossrefs

Column k=10 of A117278.
Number of partitions of n into r primes for r = 1-9: A010051, A061358, A068307, A259194, A259195, A259196, A259197, A259198, A259200.

Programs

  • Magma
    [#RestrictedPartitions(k,10,Set(PrimesUpTo(1000))):k in [20..80]] ; // Marius A. Burtea, Jul 13 2019

Formula

a(n) = [x^n y^10] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} A010051(r) * A010051(q) * A010051(p) * A010051(o) * A010051(m) * A010051(l) * A010051(k) * A010051(j) * A010051(i) * A010051(n-i-j-k-l-m-o-p-q-r). - Wesley Ivan Hurt, Jul 13 2019

A098238 Number of ordered ways of writing n as sum of three primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 3, 4, 6, 6, 9, 6, 6, 10, 9, 12, 12, 12, 12, 19, 12, 21, 15, 21, 18, 30, 15, 30, 12, 30, 18, 37, 12, 39, 21, 42, 24, 46, 9, 51, 18, 48, 24, 54, 18, 66, 21, 60, 30, 67, 24, 81, 18, 75, 30, 79, 18, 87, 21, 87, 36, 93, 15, 105, 30, 105, 36, 97, 12, 120, 30, 114, 36
Offset: 0

Views

Author

Ralf Stephan, Aug 31 2004

Keywords

Crossrefs

Programs

  • Maple
    t1:=add(q^ithprime(n),n=1..1000): series(t1^3,q,1001): seriestolist(%); # N. J. A. Sloane, Sep 29 2006
  • Mathematica
    nn = 74; a = Sum[x^p, {p, Prime[Range[nn]]}]; CoefficientList[Series[a^3, {x, 0, nn}], x] (* Geoffrey Critzer, Jan 25 2015 *)

Formula

G.f.: (Sum_{k>0} x^prime(k))^3. - Vladeta Jovovic, Mar 12 2005
Third convolution of "a(n)=1 if n prime, 0 otherwise" (A010051) with itself. - Graeme McRae, Jul 18 2006

A259200 Number of partitions of n into nine primes.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 7, 9, 10, 11, 12, 16, 16, 20, 21, 24, 26, 33, 31, 39, 39, 47, 46, 59, 53, 69, 65, 80, 77, 98, 85, 114, 104, 131, 118, 154, 133, 179, 155, 200, 177, 236, 196, 268, 227, 300, 256
Offset: 18

Views

Author

Doug Bell, Jun 20 2015

Keywords

Examples

			a(23) = 3 because there are 3 partitions of 23 into nine primes: [2,2,2,2,2,2,2,2,7], [2,2,2,2,2,2,3,3,5] and [2,2,2,2,3,3,3,3,3].
		

Crossrefs

Column k=9 of A117278.
Number of partitions of n into r primes for r = 1..10: A010051, A061358, A068307, A259194, A259195, A259196, A259197, A259198, this sequence, A259201.
Cf. A000040.

Programs

  • Magma
    [#RestrictedPartitions(k,9,Set(PrimesUpTo(1000))):k in [18..70]] ; // Marius A. Burtea, Jul 13 2019
  • Maple
    N:= 100: # to get a(0) to a(N)
    Primes:= select(isprime,[$1..N]):
    np:= nops(Primes):
    for j from 0 to np do g[0,j]:= 1 od:
    for n from 1 to 9 do
      g[n,0]:= 0:
      for j from 1 to np do
         g[n,j]:= convert(series(add(g[k,j-1]
              *x^((n-k)*Primes[j]),k=0..n),x,N+1),polynom)
      od
    od:
    seq(coeff(g[9,np],x,i),i=18..N) # Robert Israel, Jun 21 2015
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]==9&&AllTrue[ #, PrimeQ]&]], {n,18,70}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 31 2016 *)
  • PARI
    a(n) = {nb = 0; forpart(p=n, if (#p && (#select(x->isprime(x), Vec(p)) == #p), nb+=1), , [9,9]); nb;} \\ Michel Marcus, Jun 21 2015
    

Formula

a(n) = [x^n y^9] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q), where c = A010051. - Wesley Ivan Hurt, Jul 13 2019

A117278 Triangle read by rows: T(n,k) is the number of partitions of n into k prime parts (n>=2, 1<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 0, 2, 1, 3, 2, 1, 1, 0, 1, 3, 2, 3, 2, 1, 0, 2, 2, 3, 3, 2, 1, 1, 1, 0, 4, 3, 3, 3, 2, 1, 0, 2, 2, 4, 3, 4, 2, 1, 1, 1, 1, 3, 4, 5, 3, 3, 2, 1, 0, 2, 2, 6, 4, 4, 4, 2, 1, 1, 0, 1, 5, 3, 6
Offset: 2

Views

Author

Emeric Deutsch, Mar 07 2006

Keywords

Comments

Row n has floor(n/2) terms. Row sums yield A000607. T(n,1) = A010051(n) (the characteristic function of the primes). T(n,2) = A061358(n). Sum(k*T(n,k), k>=1) = A084993(n).

Examples

			T(12,3) = 2 because we have [7,3,2] and [5,5,2].
Triangle starts:
  1;
  1;
  0, 1;
  1, 1;
  0, 1, 1;
  1, 1, 1;
  0, 1, 1, 1;
  0, 1, 2, 1;
  ...
		

Crossrefs

Row sums give A000607.
T(A000040(n),n) gives A259254(n).

Programs

  • Maple
    g:=1/product(1-t*x^(ithprime(j)),j=1..30): gser:=simplify(series(g,x=0,30)): for n from 2 to 22 do P[n]:=sort(coeff(gser,x^n)) od: for n from 2 to 22 do seq(coeff(P[n],t^j),j=1..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1),
           [0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i))[]], 0)))
        end:
    T:= n-> subsop(1=NULL, b(n, numtheory[pi](n)))[]:
    seq(T(n), n=2..25);  # Alois P. Heinz, Nov 16 2012
  • Mathematica
    (* As triangle: *) nn=20;a=Product[1/(1-y x^i),{i,Table[Prime[n],{n,1,nn}]}];Drop[CoefficientList[Series[a,{x,0,nn}],{x,y}],2,1]//Grid (* Geoffrey Critzer, Oct 30 2012 *)
  • PARI
    parts(n, pred)={prod(k=1, n, if(pred(k), 1/(1-y*x^k) + O(x*x^n), 1))}
    {my(n=15); apply(p->Vecrev(p/y), Vec(parts(n, isprime)-1))} \\ Andrew Howroyd, Dec 28 2017

Formula

G.f.: G(t,x) = -1+1/product(1-tx^(p(j)), j=1..infinity), where p(j) is the j-th prime.

A259196 Number of partitions of n into six primes.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 3, 4, 5, 6, 6, 8, 7, 10, 10, 12, 11, 16, 12, 19, 17, 22, 18, 26, 20, 31, 24, 33, 27, 42, 29, 47, 35, 51, 38, 60, 41, 68, 47, 73, 53, 86, 54, 95, 64, 103, 70, 116, 73, 131, 81, 137, 89, 156, 92, 171, 103, 180, 112, 202, 117, 223, 127, 232
Offset: 12

Views

Author

Doug Bell, Jun 20 2015

Keywords

Examples

			a(17) = 3 because there are 3 partitions of 17 into six primes: [2,2,2,2,2,7], [2,2,2,3,3,5] and [2,3,3,3,3,3].
		

Crossrefs

Column k=6 of A117278.
Number of partitions of n into r primes for r = 1-10: A010051, A061358, A068307, A259194, A259195, this sequence, A259197, A259198, A259200, A259201.
Cf. A000040.

Programs

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(n-i-j-k-l-m). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019

A259197 Number of partitions of n into seven primes.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 4, 6, 6, 8, 8, 9, 10, 14, 12, 16, 16, 19, 19, 26, 22, 30, 26, 34, 31, 43, 33, 48, 42, 56, 47, 66, 51, 77, 60, 84, 68, 99, 73, 112, 86, 123, 95, 143, 103, 162, 116, 174, 131, 200, 137, 220, 156, 241, 171, 270, 180, 300, 202, 322, 223, 359
Offset: 14

Views

Author

Doug Bell, Jun 20 2015

Keywords

Examples

			a(17) = 2 because there are 2 partitions of 17 into seven primes: [2,2,2,2,2,2,5] and [2,2,2,2,3,3,3].
		

Crossrefs

Column k=7 of A117278.
Number of partitions of n into r primes for r = 1-10: A010051, A061358, A068307, A259194, A259195, A259196, this sequence, A259198, A259200, A259201.
Cf. A000040.

Programs

  • Mathematica
    Table[Length@IntegerPartitions[n, {7}, Prime@Range@100], {n, 14, 100}] (* Robert Price, Apr 25 2025 *)

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(o) * A010051(n-i-j-k-l-m-o). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^7] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019

A259198 Number of partitions of n into eight primes.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 10, 9, 12, 14, 16, 16, 21, 19, 26, 26, 31, 30, 39, 34, 46, 43, 53, 48, 65, 56, 77, 66, 85, 77, 104, 84, 118, 99, 133, 112, 155, 123, 177, 143, 196, 162, 227, 174, 256, 200, 282, 220, 318, 241, 360, 270, 389, 300, 442, 322
Offset: 16

Views

Author

Doug Bell, Jun 20 2015

Keywords

Examples

			a(20) = 2 because there are 2 partitions of 20 into eight primes: [2,2,2,2,2,2,3,5] and [2,2,2,2,3,3,3,3].
		

Crossrefs

Column k=8 of A117278.
Number of partitions of n into r primes for r = 1-10: A010051, A061358, A068307, A259194, A259195, A259196, A259197, this sequence, A259200, A259201.
Cf. A000040.

Programs

  • Mathematica
    Table[Length@IntegerPartitions[n, {8}, Prime@Range@100], {n, 16, 100}] (* Robert Price, Apr 25 2025 *)

Formula

a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(o) * A010051(p) * A010051(n-i-j-k-l-m-o-p). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^8] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = A326455(n)/n for n > 0. - Wesley Ivan Hurt, Jul 06 2019
Showing 1-10 of 52 results. Next