cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A076542 Numbers n such that A068340(n) = +-1.

Original entry on oeis.org

1, 2, 86, 89, 90, 133, 5235, 5236
Offset: 1

Views

Author

Zak Seidov, Oct 19 2002

Keywords

Comments

Presumably A068340(n)=0 only for n=10; so I looked for n's such that A068340(n)=+/-s; here s=1 (and n<=800000). For s=6, there's no solution at all! For s=8, n=34 (only 1 solution); for s=7, n={55, 56} (2 solutions); for s=9, n={5, 51, 52} (3 solutions) (for n up to 800000).
Any subsequent terms are > 10^12. - Lucas A. Brown, Mar 18 2024

Crossrefs

Cf. A068340.

A077030 Numbers k such that A068340(k)=+/-2.

Original entry on oeis.org

122, 127, 128, 142, 5233
Offset: 1

Views

Author

Zak Seidov, Oct 21 2002

Keywords

Comments

Any subsequent terms are > 10^12. - Lucas A. Brown, Mar 18 2024

Crossrefs

Programs

  • PARI
    isok(k) = abs(sum(i=1, k, i*moebius(i))) == 2; \\ Michel Marcus, Jan 14 2023

A077031 Numbers k such that A068340(k)=+/-3.

Original entry on oeis.org

6, 130, 5027, 5028
Offset: 1

Views

Author

Zak Seidov, Oct 21 2002

Keywords

Comments

Any subsequent terms are > 10^12. - Lucas A. Brown, Mar 18 2024

Crossrefs

Programs

  • PARI
    isok(k) = abs(sum(i=1, k, i*moebius(i))) == 3; \\ Michel Marcus, Jan 14 2023

A077032 Numbers k such that A068340(k)=+/-4.

Original entry on oeis.org

3, 4, 137, 5023, 5024, 5025, 5030, 5031, 5032
Offset: 1

Views

Author

Zak Seidov, Oct 21 2002

Keywords

Comments

Any subsequent terms are > 10^12. - Lucas A. Brown, Mar 18 2024

Crossrefs

Programs

  • PARI
    isok(k) = abs(sum(i=1, k, i*moebius(i))) == 4; \\ Michel Marcus, Jan 14 2023

A077033 Numbers k such that A068340(k) = +/-5.

Original entry on oeis.org

15, 16, 5034, 5241
Offset: 1

Views

Author

Zak Seidov, Oct 21 2002

Keywords

Comments

Any subsequent terms are > 10^12. - Lucas A. Brown, Mar 18 2024

Crossrefs

Programs

  • PARI
    isok(k) = abs(sum(i=1, k, i*moebius(i))) == 5; \\ Michel Marcus, Jan 14 2023

A076599 Numbers n such that A068340(n) = +-10.

Original entry on oeis.org

7, 8, 9, 14, 21, 37
Offset: 1

Views

Author

Zak Seidov, Oct 21 2002

Keywords

Comments

Crossrefs

A055615 a(n) = n * mu(n), where mu is the Möbius function A008683.

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, -41, -42, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -66, -67, 0, 69, -70, -71, 0
Offset: 1

Views

Author

Michael Somos, Jun 04 2000

Keywords

Comments

Dirichlet inverse of n (A000027).
Absolute values give n if n is squarefree, otherwise 0.
a(n) is multiplicative because both mu(n) and n are. - Mitch Harris, Jun 09 2005
a(n) is multiplicative with a(p^1) = -p, a(p^e) = 0 if e > 1. - David W. Wilson, Jun 12 2005
Negative of the Moebius number of the dihedral group of order 2n. - Eric M. Schmidt, Jul 28 2013

Examples

			G.f. = x - 2*x^2 - 3*x^3 - 5*x^5 + 6*x^6 - 7*x^7 + 10*x^10 - 11*x^11 - 13*x^13 + ...
		

Crossrefs

Moebius transform of A023900.
Cf. A000027 (Dirichlet inverse), A061669 (sum with it).
Cf. A062004.
Cf. A013929 (positions of 0's), A068340 (partial sums), A261869 (first differences), A261890 (second differences).

Programs

  • Haskell
    a055615 n = a008683 n * n  -- Reinhard Zumkeller, Sep 04 2015
    
  • Magma
    [n*MoebiusMu(n): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    with(numtheory): A055615:=n->n*mobius(n): seq(A055615(n), n=1..100); # Wesley Ivan Hurt, Nov 18 2014
  • Mathematica
    Table[n MoebiusMu[n], {n,80}] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    {a(n) = if( n<1, 0, n * moebius(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 - p*X)[n])};
    
  • Python
    from sympy import mobius
    def A055615(n): return n*mobius(n) # Chai Wah Wu, Apr 01 2023
  • SageMath
    [n*moebius(n) for n in (1..100)] # G. C. Greubel, May 24 2022
    

Formula

a(n) = n * A008683(n).
Dirichlet g.f.: 1/zeta(s-1).
Multiplicative with a(p^e) = -p*0^(e-1), e>0 and p prime. - Reinhard Zumkeller, Jul 17 2003
Conjectures: lim b->1+ Sum n=1..inf a(n)*b^(-n) = -12 and lim b->1- Sum n=1..inf a(n)*b^n = -12 (+ indicates that b decreases to 1, - indicates it increases to 1), both considering that zeta(-1) = -1/12 and calculations (more generally mu(n)*n^s is Abel summable to zeta(-s)). - Gerald McGarvey, Sep 26 2004
Dirichlet generating function for the absolute value: zeta(s-1)/zeta(2s-2). - Franklin T. Adams-Watters, Sep 11 2005
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k*A(x^k). - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 3*n^2/Pi^2. - Amiram Eldar, Feb 02 2024

A336276 a(n) = Sum_{k=1..n} mu(k)*k^2.

Original entry on oeis.org

1, -3, -12, -12, -37, -1, -50, -50, -50, 50, -71, -71, -240, -44, 181, 181, -108, -108, -469, -469, -28, 456, -73, -73, -73, 603, 603, 603, -238, -1138, -2099, -2099, -1010, 146, 1371, 1371, 2, 1446, 2967, 2967, 1286, -478, -2327, -2327, -2327, -211, -2420
Offset: 1

Views

Author

Donald S. McDonald, Jul 15 2020

Keywords

Comments

Conjecture: a(n) changes sign infinitely often.

Crossrefs

Programs

  • Mathematica
    Array[Sum[MoebiusMu[k]*k^2, {k, #}] &, 47] (* Michael De Vlieger, Jul 15 2020 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^2); \\ Michel Marcus, Jul 15 2020
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A336276(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c -= (j2*(j2-1)*((j2<<1)-1)-j*(j-1)*((j<<1)-1))//6*A336276(k1)
            j, k1 = j2, n//j2
        return c-(n*(n+1)*((n<<1)+1)-j*(j-1)*((j<<1)-1))//6 # Chai Wah Wu, Apr 04 2023

Formula

Partial sums of A334657.
G.f. A(x) satisfies x = Sum_{k>=1} k^2 * (1 - x^k) * A(x^k). - Seiichi Manyama, Apr 01 2023
Sum_{k=1..n} k^2 * a(floor(n/k)) = 1. - Seiichi Manyama, Apr 03 2023

A336277 a(n) = Sum_{k=1..n} mu(k)*k^3.

Original entry on oeis.org

1, -7, -34, -34, -159, 57, -286, -286, -286, 714, -617, -617, -2814, -70, 3305, 3305, -1608, -1608, -8467, -8467, 794, 11442, -725, -725, -725, 16851, 16851, 16851, -7538, -34538, -64329, -64329, -28392, 10912, 53787, 53787, 3134, 58006, 117325, 117325, 48404
Offset: 1

Views

Author

Donald S. McDonald, Jul 15 2020

Keywords

Comments

Conjecture: a(n) changes sign infinitely often.

Crossrefs

Programs

  • Mathematica
    Array[Sum[MoebiusMu[k]*k^3, {k, #}] &, 41] (* Michael De Vlieger, Jul 15 2020 *)
    Accumulate[Table[MoebiusMu[n] n^3,{n,50}]] (* Harvey P. Dale, Aug 15 2024 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^3); \\ Michel Marcus, Jul 15 2020
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A336277(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c -= ((j2*(j2-1))**2-(j*(j-1))**2>>2)*A336277(k1)
            j, k1 = j2, n//j2
        return c-((n*(n+1))**2-((j-1)*j)**2>>2) # Chai Wah Wu, Apr 04 2023

Formula

Partial sums of A334659.
G.f. A(x) satisfies x = Sum_{k>=1} k^3 * (1 - x^k) * A(x^k). - Seiichi Manyama, Apr 01 2023
Sum_{k=1..n} k^3 * a(floor(n/k)) = 1. - Seiichi Manyama, Apr 03 2023

A336278 a(n) = Sum_{k=1..n} mu(k)*k^4.

Original entry on oeis.org

1, -15, -96, -96, -721, 575, -1826, -1826, -1826, 8174, -6467, -6467, -35028, 3388, 54013, 54013, -29508, -29508, -159829, -159829, 34652, 268908, -10933, -10933, -10933, 446043, 446043, 446043, -261238, -1071238, -1994759, -1994759, -808838, 527498, 2028123
Offset: 1

Views

Author

Donald S. McDonald, Jul 15 2020

Keywords

Comments

Conjecture: a(n) changes sign infinitely often.

Crossrefs

Programs

  • Mathematica
    Array[Sum[MoebiusMu[k]*k^4, {k, #}] &, 35] (* Michael De Vlieger, Jul 15 2020 *)
    Accumulate[Table[MoebiusMu[x]x^4,{x,40}]] (* Harvey P. Dale, Jan 14 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^4); \\ Michel Marcus, Jul 15 2020
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A336278(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c -= (j2*(j2**2*(j2*(6*j2 - 15) + 10) - 1)-j*(j**2*(j*(6*j - 15) + 10) - 1))//30*A336278(k1)
            j, k1 = j2, n//j2
        return c-(n*(n**2*(n*(6*n + 15) + 10) - 1)-j*(j**2*(j*(6*j - 15) + 10) - 1))//30 # Chai Wah Wu, Apr 04 2023

Formula

Partial sums of A334660.
From Seiichi Manyama, Apr 03 2023: (Start)
G.f. A(x) satisfies x = Sum_{k>=1} k^4 * (1 - x^k) * A(x^k).
Sum_{k=1..n} k^4 * a(floor(n/k)) = 1. (End)
Showing 1-10 of 17 results. Next