A076542 Numbers n such that A068340(n) = +-1.
1, 2, 86, 89, 90, 133, 5235, 5236
Offset: 1
Links
- Lucas A. Brown, Python program.
Crossrefs
Cf. A068340.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
isok(k) = abs(sum(i=1, k, i*moebius(i))) == 2; \\ Michel Marcus, Jan 14 2023
isok(k) = abs(sum(i=1, k, i*moebius(i))) == 3; \\ Michel Marcus, Jan 14 2023
isok(k) = abs(sum(i=1, k, i*moebius(i))) == 4; \\ Michel Marcus, Jan 14 2023
isok(k) = abs(sum(i=1, k, i*moebius(i))) == 5; \\ Michel Marcus, Jan 14 2023
G.f. = x - 2*x^2 - 3*x^3 - 5*x^5 + 6*x^6 - 7*x^7 + 10*x^10 - 11*x^11 - 13*x^13 + ...
a055615 n = a008683 n * n -- Reinhard Zumkeller, Sep 04 2015
[n*MoebiusMu(n): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
with(numtheory): A055615:=n->n*mobius(n): seq(A055615(n), n=1..100); # Wesley Ivan Hurt, Nov 18 2014
Table[n MoebiusMu[n], {n,80}] (* Harvey P. Dale, May 26 2011 *)
{a(n) = if( n<1, 0, n * moebius(n))};
{a(n) = if( n<1, 0, direuler(p=2, n, 1 - p*X)[n])};
from sympy import mobius def A055615(n): return n*mobius(n) # Chai Wah Wu, Apr 01 2023
[n*moebius(n) for n in (1..100)] # G. C. Greubel, May 24 2022
Array[Sum[MoebiusMu[k]*k^2, {k, #}] &, 47] (* Michael De Vlieger, Jul 15 2020 *)
a(n) = sum(k=1, n, moebius(k)*k^2); \\ Michel Marcus, Jul 15 2020
from functools import lru_cache @lru_cache(maxsize=None) def A336276(n): if n <= 1: return 1 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c -= (j2*(j2-1)*((j2<<1)-1)-j*(j-1)*((j<<1)-1))//6*A336276(k1) j, k1 = j2, n//j2 return c-(n*(n+1)*((n<<1)+1)-j*(j-1)*((j<<1)-1))//6 # Chai Wah Wu, Apr 04 2023
Array[Sum[MoebiusMu[k]*k^3, {k, #}] &, 41] (* Michael De Vlieger, Jul 15 2020 *) Accumulate[Table[MoebiusMu[n] n^3,{n,50}]] (* Harvey P. Dale, Aug 15 2024 *)
a(n) = sum(k=1, n, moebius(k)*k^3); \\ Michel Marcus, Jul 15 2020
from functools import lru_cache @lru_cache(maxsize=None) def A336277(n): if n <= 1: return 1 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c -= ((j2*(j2-1))**2-(j*(j-1))**2>>2)*A336277(k1) j, k1 = j2, n//j2 return c-((n*(n+1))**2-((j-1)*j)**2>>2) # Chai Wah Wu, Apr 04 2023
Array[Sum[MoebiusMu[k]*k^4, {k, #}] &, 35] (* Michael De Vlieger, Jul 15 2020 *) Accumulate[Table[MoebiusMu[x]x^4,{x,40}]] (* Harvey P. Dale, Jan 14 2021 *)
a(n) = sum(k=1, n, moebius(k)*k^4); \\ Michel Marcus, Jul 15 2020
from functools import lru_cache @lru_cache(maxsize=None) def A336278(n): if n <= 1: return 1 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c -= (j2*(j2**2*(j2*(6*j2 - 15) + 10) - 1)-j*(j**2*(j*(6*j - 15) + 10) - 1))//30*A336278(k1) j, k1 = j2, n//j2 return c-(n*(n**2*(n*(6*n + 15) + 10) - 1)-j*(j**2*(j*(6*j - 15) + 10) - 1))//30 # Chai Wah Wu, Apr 04 2023
Comments