A069359 a(n) = n * Sum_{p|n} 1/p where p are primes dividing n.
0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 31, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 41, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 62, 1, 33, 30, 32, 18, 61, 1, 38, 26, 59, 1, 60, 1, 39, 40, 42, 18, 71, 1, 56
Offset: 1
Keywords
Examples
a(12) = 10 because the prime divisors of 12 are 2 and 3 so we have: 12/2 + 12/3 = 6 + 4 = 10. - _Geoffrey Critzer_, Mar 17 2015
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384 (first 10000 terms from Franklin T. Adams-Watters)
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
- MathOverflow, A recursion with a number-theoretic function (2019)
- Joshua Zelinsky, The sum of the reciprocals of the prime divisors of an odd perfect or odd primitive non-deficient number, arXiv:2402.14234 [math.NT], 2024. See also Integers (2025) Vol. 25, Art. No. A59, page 2.
Crossrefs
Programs
-
Magma
[0] cat [n*&+[1/p: p in PrimeDivisors(n)]:n in [2..80]]; // Marius A. Burtea, Jan 21 2020
-
Maple
A069359 := n -> add(n/d, d = select(isprime, numtheory[divisors](n))): seq(A069359(i), i = 1..20); # Peter Luschny, Jan 31 2012 # second Maple program: a:= n-> n*add(1/i[1], i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Oct 23 2019
-
Mathematica
f[list_, i_] := list[[i]]; nn = 100; a = Table[n, {n, 1, nn}]; b = Table[If[PrimeQ[n], 1, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Mar 17 2015 *)
-
PARI
a(n) = n*sumdiv(n, d, isprime(d)/d); \\ Michel Marcus, Mar 18 2015
-
PARI
a(n) = my(ps=factor(n)[,1]~);sum(k=1,#ps,n\ps[k]) \\ Franklin T. Adams-Watters, Apr 09 2015
-
Python
from sympy import primefactors def A069359(n): return sum(n//p for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
-
Sage
def A069359(n) : D = filter(is_prime, divisors(n)) return add(n/d for d in D) print([A069359(i) for i in (1..20)]) # Peter Luschny, Jan 31 2012
Formula
G.f.: Sum(x^p(j)/(1-x^p(j))^2,j>=1), where p(j) is the j-th prime. - Vladeta Jovovic, Mar 29 2006
a(n) = A230593(n) - n. a(n) = A010051(n) (*) A000027(n), where operation (*) denotes Dirichlet convolution, that is, convolution of type: a(n) = Sum_(d|n) b(d) * c(n/d) = Sum_{d|n} A010051(d) * A000027(n/d). - Jaroslav Krizek, Nov 07 2013
Dirichlet g.f.: zeta(s - 1)*primezeta(s). - Geoffrey Critzer, Mar 17 2015
Sum_{k=1..n} a(k) ~ A085548 * n^2 / 2. - Vaclav Kotesovec, Feb 04 2019
From Antti Karttunen, Nov 15 2019: (Start)
(End)
a(n) = Sum_{k=1..n} omega(gcd(n, k)). - Ilya Gutkovskiy, Feb 21 2020
a(p^k) = p^(k-1) for p prime and k>=1. - Wesley Ivan Hurt, Jul 15 2025
Comments