cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005060 a(n) = 5^n - 4^n.

Original entry on oeis.org

0, 1, 9, 61, 369, 2101, 11529, 61741, 325089, 1690981, 8717049, 44633821, 227363409, 1153594261, 5835080169, 29443836301, 148292923329, 745759583941, 3745977788889, 18798608421181, 94267920012849
Offset: 0

Views

Author

Keywords

Comments

Also, the number of numbers with at most n digits whose largest digit equals 4. - M. F. Hasler, May 03 2015
a(n) is divisible by 7 iff n is divisible by 6; for example: a(6) = 11529 = 7 * 1647 (see 'Les cahier du bac' or subtract A070365 and A153727 and locate zeros). - Bernard Schott, Oct 02 2020
a(n) is the number of n-digit numbers whose smallest decimal digit is 5. - Stefano Spezia, Nov 15 2023

References

  • Les Cahiers du Bac, Terminales C & E, Tome 1, 1985, Exercice 109, p. 18; Bac Rouen, Série C, 1978.

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) + 4^(n-1). - Xavier Acloque, Oct 20 2003
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-5*x) - 1/(1-4*x).
E.g.f.: e^(5*x) - e^(4*x). (End)
a(n) = 9*a(n-1) - 20*a(n-2), a(0)=0, a(1)=1. - Vincenzo Librandi, Jan 28 2011

A201910 Irregular triangle of 5^k mod prime(n).

Original entry on oeis.org

1, 1, 2, 0, 1, 5, 4, 6, 2, 3, 1, 5, 3, 4, 9, 1, 5, 12, 8, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 25, 9, 16, 22, 23, 28, 24, 4
Offset: 1

Views

Author

T. D. Noe, Dec 07 2011

Keywords

Comments

Except for the third row, the first term of each row is 1. Many sequences are in this one: starting at A036121 (mod 23) and A070365 (mod 7).

Examples

			The first 9 rows are:
1
1, 2
0
1, 5, 4, 6, 2, 3
1, 5, 3, 4, 9
1, 5, 12, 8
1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7
1, 5, 6, 11, 17, 9, 7, 16, 4
1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14
		

Crossrefs

Cf. A201908 (2^k), A201909 (3^k), A201911 (7^k).
Cf. A070365 (7), A070367 (11), A070368 (13), A070371 (17), A070373 (19), A036121 (23), A070379 (29), A070384 (37), A070387 (41), A070389 (43), A036127 (47), A036133 (73), A036137 (97), A036139 (103), A036149 (157), A036151 (167), A036156 (193).

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);;
    R:=List([1..Length(P)],n->OrderMod(5,P[n]));;
    Flat(Concatenation([1,1,2,0],List([3..10],n->List([0..R[n]-1],k->PowerMod(5,k,P[n]))))); # Muniru A Asiru, Feb 02 2019
  • Mathematica
    nn = 10; p = 5; t = p^Range[0,Prime[nn]]; Flatten[Table[If[Mod[n, p] == 0, {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, Prime[Range[nn]]}]]

A271378 a(n) = 5^n mod 31.

Original entry on oeis.org

1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25
Offset: 0

Views

Author

Vincenzo Librandi, Apr 06 2016

Keywords

Comments

Period 3: repeat [1, 5, 25].

Crossrefs

Cf. similar sequences of the type 5^n mod p, where p is a prime: A070365 (p=7), A070367 (p=11), A070368 (p=13), A070371 (p=17), A070373 (p=19), A036121 (p=23), A070379 (p=29), this sequence (p=31), A070384 (p=37), A070387 (p=41), A070389 (p=43), A036127 (p=47), A036133 (p=73), A036137 (p=97), A271379 (p=101), A036139 (p=103), A036149 (p=157), A271380 (p=163) A036151 (p=167), A036156 (p=193).

Programs

  • Magma
    [Modexp(5, n, 31): n in [0..100]];
    
  • Magma
    &cat [[1,5,25]^^30]; // Bruno Berselli, Apr 07 2016
    
  • Maple
    seq(op([1, 5, 25]), n=0..50); # Wesley Ivan Hurt, Jun 30 2016
  • Mathematica
    PowerMod[5, Range[0, 100], 31]
  • PARI
    x='x+O('x^99); Vec((1+5*x+25*x^2)/(1-x^3)) \\ Altug Alkan, Apr 06 2016

Formula

G.f.: (1+5*x+25*x^2)/(1-x^3).
a(n) = a(n-3) for n>2.
a(n) = 5^(n mod 3).
a(n) = (31 - 28*cos(2*n*Pi/3) - 20*sqrt(3)*sin(2*n*Pi/3))/3. - Wesley Ivan Hurt, Jun 30 2016

Extensions

Edited by Bruno Berselli, Apr 07 2016

A178141 Period 6: repeat [4, -1, 2, -4, 1, 2].

Original entry on oeis.org

4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2
Offset: 0

Views

Author

Paul Curtz, May 21 2010

Keywords

Comments

Differences of the period 6: repeat [1, 5, 4, 6, 2, 3] (A070365).

Crossrefs

Programs

Formula

Mix A153727(n+1) with -A153727(n).
From Wesley Ivan Hurt, Jun 23 2016: (Start)
G.f.: (4-x+2*x^2-4*x^3+x^4+2*x^5)/(1-x^6).
a(n) = a(n-6) for n>5.
a(n) = (2 + 5*cos(n*Pi) + 7*cos(n*Pi/3) - 2*cos(2*n*Pi/3) - sqrt(3)*sin(n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3))/3. (End)

Extensions

New name from Wesley Ivan Hurt, Jun 23 2016

A178229 Decimal expansion of (221+11*sqrt(1086))/490.

Original entry on oeis.org

1, 1, 9, 0, 8, 1, 5, 6, 2, 2, 8, 0, 0, 5, 0, 9, 7, 6, 4, 4, 5, 5, 1, 1, 9, 9, 8, 3, 0, 7, 4, 3, 7, 9, 5, 7, 5, 5, 7, 9, 9, 0, 8, 8, 6, 7, 8, 0, 8, 8, 1, 1, 0, 3, 3, 1, 8, 6, 0, 1, 0, 1, 1, 9, 0, 3, 6, 9, 8, 4, 0, 1, 3, 4, 5, 4, 0, 8, 5, 4, 0, 0, 6, 1, 6, 7, 8, 5, 9, 6, 3, 7, 9, 5, 8, 5, 8, 3, 3, 5, 1, 0, 2, 3, 0
Offset: 1

Views

Author

Klaus Brockhaus, May 23 2010

Keywords

Comments

Continued fraction expansion of (221+11*sqrt(1086))/490 is A070365.

Examples

			(221+11*sqrt(1086))/490 = 1.19081562280050976445...
		

Crossrefs

Cf. A178230 (decimal expansion of sqrt(1086)), A070365 (repeat 1, 5, 4, 6, 2, 3).
Showing 1-5 of 5 results.