cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A046346 Composite numbers that are divisible by the sum of their prime factors (counted with multiplicity).

Original entry on oeis.org

4, 16, 27, 30, 60, 70, 72, 84, 105, 150, 180, 220, 231, 240, 256, 286, 288, 308, 378, 440, 450, 476, 528, 540, 560, 576, 588, 594, 624, 627, 646, 648, 650, 728, 800, 805, 840, 884, 897, 900, 945, 960, 1008, 1040, 1056, 1080, 1100, 1122, 1134, 1160, 1170, 1248
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

If m is in the sequence and d|m, then m^d is also a term. Note that this sequence contains all infinite subsequences of the form p^(p^k) for k>0, where p is a prime. - Amiram Eldar and Thomas Ordowski, Feb 06 2019
If one selects some composite k, k >= 8, and decomposes (k - sopfr(k)) into an additive partition having only prime parts, then those parts, when taken as a product with k, yield an element of this sequence. - Christopher Hohl, Jul 30 2019

Examples

			a(38) = 884 = 2 * 2 * 13 * 17 -> 2 + 2 + 13 + 17 = 34 so 884 / 34 = 26.
		

Crossrefs

Programs

  • MATLAB
    m=1;for u=2:1200 if and(isprime(u)==0,mod(u,sum(factor(u)))==0); sol(m)=u; m=m+1; end; end;sol % Marius A. Burtea, Jul 31 2019
    
  • Magma
    [k:k in [2..1200]| not IsPrime(k) and  k mod (&+[m[1]*m[2]: m in Factorization(k)]) eq 0]; // Marius A. Burtea, Jul 31 2019
    
  • Maple
    isA046346 := proc(n)
        if isprime(n) then
            false;
        elif modp(n,A001414(n)) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    for n from 2 to 1000 do
        if isA046346(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jan 12 2016
  • Mathematica
    Select[Range[2,1170],!PrimeQ[#]&&IntegerQ[#/Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, Jun 02 2013 *)
  • PARI
    sopfr(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,1]*f[k,2]);}
    lista(nn) = forcomposite(n=2, nn, if (! (n % sopfr(n)), print1(n, ", "));); \\ Michel Marcus, Jan 06 2016
    
  • Python
    from sympy import factorint
    def ok(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and n % sum(p*f[p] for p in f) == 0
    print(list(filter(ok, range(1250)))) # Michael S. Branicky, Apr 16 2021

Extensions

Description corrected by Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 09 2002

A365795 Numbers k such that omega(k) = 3 and its prime factors satisfy the equation p_1 + p_2 = p_3.

Original entry on oeis.org

30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2160, 2240, 2250, 2288, 2400, 2430, 2450
Offset: 1

Views

Author

Stefano Spezia, Sep 19 2023

Keywords

Comments

The lower prime factor p_1 is equal to 2 and the other two are twin primes: p_3 - p_2 = 2.

Examples

			60 is a term since 60 = 2^2*3*5 and 2 + 3 = 5.
286 is a term since 286 = 2*11*13 and 2 + 11 = 13.
		

Crossrefs

Subsequence of A033992 and of A071140.

Programs

  • Mathematica
    Select[Range[2500],PrimeNu[#]==3&&Part[First/@FactorInteger[#],1]+Part[First/@FactorInteger[#],2]==Part[First/@FactorInteger[#],3]&]
  • PARI
    isok(k) = if (omega(k)==3, my(f=factor(k)[,1]); f[1] + f[2] == f[3]); \\ Michel Marcus, Sep 19 2023

A221054 Numbers whose distinct prime factors can be partitioned into two equal sums.

Original entry on oeis.org

1, 30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2145, 2160, 2240, 2250, 2288, 2310, 2400, 2430, 2450, 2584, 2700, 2730, 2800, 2880, 3000, 3135
Offset: 1

Views

Author

Keywords

Comments

This is a superset of 2*product of twin primes, A071142.

Crossrefs

Cf. A175592 (multiplicity of prime factors allowed).
Cf. A071139-A071147, especially A071140.

Programs

  • Haskell
    a221054 n = a221054_list !! (n-1)
    a221054_list = filter (z 0 0 . a027748_row) $ tail a005843_list where
       z u v []     = u == v
       z u v (p:ps) = z (u + p) v ps || z u (v + p) ps
    -- Reinhard Zumkeller, Apr 18 2013
    
  • Mathematica
    q[n_] := Module[{p = FactorInteger[n][[;; , 1]], sum, x}, sum = Total[p]; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, p}], x][[1 + sum/2]] > 0]; Select[Range[3200], q] (* Amiram Eldar, May 31 2025 *)
  • PARI
    isok(k) = my(f=factor(k), nb=#f~); for (i=0,2^nb-1, my(v=Vec(Vecrev(binary(i)), nb)); if (sum(k=1, nb, if (v[k], f[k,1])) == sum(k=1, nb, if (!v[k], f[k,1])), return(1));); \\ Michel Marcus, May 31 2025

Extensions

Missing terms inserted by Michel Marcus, May 31 2025

A379033 Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a nondegenerate triangle.

Original entry on oeis.org

8, 12, 18, 27, 45, 50, 75, 98, 105, 125, 147, 175, 242, 245, 338, 343, 363, 385, 429, 507, 539, 578, 605, 637, 715, 722, 845, 847, 867, 969, 1001, 1058, 1083, 1105, 1183, 1309, 1331, 1445, 1547, 1573, 1587, 1615, 1682, 1729, 1805, 1859, 1922, 2023, 2057, 2185, 2197
Offset: 1

Views

Author

Felix Huber, Dec 24 2024

Keywords

Comments

Subsequence of A014612 and of A145784.
Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a degenerate triangle are in A071142.

Examples

			12 = 2*2*3 is in the sequence because 2 + 2 > 3.
20 = 2*2*5 is not in the sequence because 2 + 2 < 5.
30 = 2*3*5 is not in the sequence because 2 + 3 = 5.
		

Crossrefs

Programs

  • Maple
    A379033:=proc(n)
       option remember;
       local a,i,j,P;
       if n=1 then
          8
       else
          for a from procname(n-1)+1 do
             P:=[];
             if NumberTheory:-Omega(a)=3 then
                for i in ifactors(a)[2] do
                   j:=0;
                   while jP[3] then
                   return a
                fi
             fi
          od
       fi	
    end proc;
    seq(A379033(n),n=1..51);

A384498 Squarefree numbers whose distinct prime factors can be partitioned into two sets with equal sums.

Original entry on oeis.org

1, 30, 70, 286, 646, 1798, 2145, 2310, 2730, 3135, 3526, 3570, 4641, 4845, 5005, 5610, 6006, 6279, 6630, 7198, 7410, 7854, 8778, 8855, 8970, 9177, 10366, 10374, 10626, 10695, 11305, 11571, 11730, 13110, 13485, 13566, 13585, 15470, 16095, 16302, 16422, 16530
Offset: 1

Views

Author

Alois P. Heinz, May 31 2025

Keywords

Examples

			2145 = 3*5*11*13 is a term because it is squarefree and 3+13 = 5+11.
16422 = 2*3*7*17*23 is squarefree and 2+7+17 = 3+23.
		

Crossrefs

Intersection of A005117 and A221054.

Programs

  • Maple
    q:= n-> (l-> {l[.., 2][]} minus {1}={} and (s->
            (m-> m::even and coeff(mul(1+x^j, j=s), x, m/2)>0)
            (add(i, i=s)))({l[.., 1][]}))(ifactors(n)[2]):
    select(q, [$1..20000])[];
  • Mathematica
    Join[{1},Select[Range[16600],SquareFreeQ[#]&&MemberQ[Total/@Subsets[First/@FactorInteger[#]],Total[First/@FactorInteger[#]]/2]&]] (* James C. McMahon, Jun 02 2025 *)

A323640 Numbers m having at least one pair (x,y) of divisors with x

Original entry on oeis.org

6, 20, 56, 70, 110, 182, 272, 286, 308, 506, 646, 650, 812, 884, 992, 1150, 1406, 1672, 1748, 1798, 1892, 2162, 2756, 2990, 3422, 3526, 3782, 4030, 4466, 4556, 4606, 4930, 5402, 5510, 5704, 6032, 6068, 6806, 7198, 7310, 7378, 7832, 7904, 8084, 8170, 8246, 8584, 8710
Offset: 1

Views

Author

David A. Corneth, Aug 31 2019

Keywords

Comments

Primitive terms of A094519.
From Bernard Schott, Aug 31 2019: (Start)
Some subsequences (this list is not exhaustive):
1) Oblong numbers of the form (3*k+1)*(3*k+2). These are in A001504 and the pair (x,y) = (1,3*k+1). Only 6 is oblong and not of this form. The first few terms are 20, 56, 110, 182, 272, ...
2) Numbers of the form 2*p*q where (p, q) is a twin prime pair. These terms are precisely A071142 \ {30} and the pair (x,y) = (2,p). The first few terms are 70, 286, 646, ...
3) Numbers of the form 2^2 * p * q where p and q = p+4 are primes and p > 3. These primes p are in A023200 \ {3} and the pair (x,y) = (4,p). The first few terms are 308, 884, ...
4) More generally, numbers of the form 2^k * p * q where p and q = p+2^k are primes and the pair (x,y) = (2^k,p). For k = 3, the smallest such term is 1672 with p = 11. (End)

Examples

			56 is in the sequence as 1, 7 and 1 + 7 = 8 are divisors of 56 and no divisor of 56 is in the sequence.
		

Crossrefs

Cf. A094519.

Programs

  • Maple
    filter:= proc(n) local D,i,j,nD;
      D:= numtheory:-divisors(n);
      nD:= nops(D);
      for i from 1 to nD-1 do
        for j from i+1 to nD do
          if (n/(D[i]+D[j]))::integer then return true fi
      od od;
      false
    end proc:
    N:= 10000: # for terms <= N
    C:= Vector(N):
    R:= NULL:
    for i from 1 to N do
      if C[i]=0 and filter(i) then
        R:= R, i;
        C[[seq(i*j,j=2..N/i)]]:= 1
      fi
    od:
    R; # Robert Israel, Sep 02 2019
  • PARI
    upto(n) = {my(charprim = vector(n, i, 1), res = List()); for(i = 1, n, if(charprim[i] == 1, if(isA094519(i), listput(res, i); for(k = 2, n \ i, charprim[i*k] = 0 ) , charprim[i] = 0; ) ) ); res }
    isA094519(n) = {my(d = divisors(n)); for(i = 1, #d - 2, for(j = i + 1, #d - 1, if(n % (d[i] + d[j]) == 0, return(1) ) ) ); 0 }
Showing 1-6 of 6 results.