A108075
Triangle in A071945 with rows reversed.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 9, 9, 5, 1, 31, 31, 19, 7, 1, 113, 113, 73, 33, 9, 1, 431, 431, 287, 143, 51, 11, 1, 1697, 1697, 1153, 609, 249, 73, 13, 1, 6847, 6847, 4719, 2591, 1151, 399, 99, 15, 1, 28161, 28161, 19617, 11073, 5201, 2001, 601, 129, 17, 1, 117631, 117631, 82623
Offset: 0
Triangle begins:
1;
1, 1;
3, 3, 1;
9, 9, 5, 1;
31, 31, 19, 7, 1;
...
-
q:=sqrt(1-4*z-4*z^2): G:=(1-q)/z/(1+z)/(2-t+t*q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form - Emeric Deutsch, Jun 06 2005
A052709
Expansion of g.f. (1-sqrt(1-4*x-4*x^2))/(2*(1+x)).
Original entry on oeis.org
0, 1, 1, 3, 9, 31, 113, 431, 1697, 6847, 28161, 117631, 497665, 2128127, 9183489, 39940863, 174897665, 770452479, 3411959809, 15181264895, 67833868289, 304256253951, 1369404661761, 6182858317823, 27995941060609, 127100310290431, 578433619525633, 2638370120138751
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- N. J. A. Sloane, Table of n, a(n) for n = 0..499
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Ascending runs in permutations and valued Dyck paths, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 445-463.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
- Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara, and Michael D. Weiner, Enumeration of colored Dyck paths via partial Bell polynomials, arXiv:1602.03550 [math.CO], 2016.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- L. Ferrari, E. Pergola, R. Pinzani, and S. Rinaldi, Jumping succession rules and their generating functions, Discrete Math., 271 (2003), 29-50.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 664
- J. P. S. Kung and A. de Mier, Catalan lattice paths with rook, bishop and spider steps, Journal of Combinatorial Theory, Series A 120 (2013) 379-389. - _N. J. A. Sloane_, Dec 27 2012
- D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
-
[0] cat [(&+[Binomial(n,k+1)*Binomial(2*k,n-1): k in [0..n-1]])/n: n in [1..30]]; // G. C. Greubel, May 30 2022
-
spec := [S,{C=Prod(B,Z),S=Union(B,C,Z),B=Prod(S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
InverseSeries[Series[(y-y^2)/(1+y^2), {y, 0, 24}], x] (* then A(x)= y(x) *) (* Len Smiley, Apr 12 2000 *)
CoefficientList[Series[(1 -Sqrt[1 -4x -4x^2])/(2(1+x)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 12 2016 *)
-
a(n)=polcoeff((1-sqrt(1-4*x*(1+x+O(x^n))))/2/(1+x),n)
-
[sum(binomial(k, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, May 30 2022
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000
A052705
Expansion of 2*x^2/(1 - 2*x - 2*x^2 + sqrt(1 - 4*x - 4*x^2)).
Original entry on oeis.org
0, 0, 1, 2, 7, 24, 89, 342, 1355, 5492, 22669, 94962, 402703, 1725424, 7458065, 32482798, 142414867, 628037612, 2783922197, 12397342698, 55436525591, 248819728360, 1120584933401, 5062273384422, 22933667676187
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 660
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Can. J. Math., 49 (2) (1997) 301-310.
-
spec := [S,{S=Prod(B,B),C=Prod(S,Z),B=Union(S,C,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[(2x^2)/(1-2x-2x^2+Sqrt[1-4x-4x^2]),{x,0,30}],x] (* Harvey P. Dale, Dec 16 2014 *)
Join[{0,0},Table[(Binomial[2(m-1),m]HypergeometricPFQ[{(2-m)/2,(3-m)/2,-m},{3/2-m,2-m},-1])/(m-1),{m,2,20}]] (* Benedict W. J. Irwin, Sep 13 2016 *)
-
a(n):=(sum(binomial(2*n-2*j,n)*binomial(n,j-1)/(n-j),j,1,n/2)); /* Vladimir Kruchinin, Jan 16 2015 */
A071943
Triangle T(n,k) (n>=0, 0 <= k <= n) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R=(1,0), V=(0,1) and D=(1,2).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 9, 1, 4, 12, 24, 31, 1, 5, 18, 46, 89, 113, 1, 6, 25, 76, 183, 342, 431, 1, 7, 33, 115, 323, 741, 1355, 1697, 1, 8, 42, 164, 520, 1376, 3054, 5492, 6847, 1, 9, 52, 224, 786, 2326, 5900, 12768, 22669, 28161, 1, 10, 63, 296, 1134, 3684, 10370
Offset: 0
T(3,2)=7 because we have RRRVV, RRVRV, RRVVR, RVRRV, RVRVR, RRD and RDR.
Array begins:
1,
1, 1,
1, 2, 3,
1, 3, 7, 9,
1, 4, 12, 24, 31,
1, 5, 18, 46, 89, 113,
1, 6, 25, 76, 183, 342, 431,
1, 7, 33, 115, 323, 741, 1355, 1697,
...
Equivalently, let U(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,-1) and (0,-1). Then U(n,n-k) = T(n,k). The U(n,k) array begins:
4: 0 0 0 0 1 5 ...
3: 0 0 0 1 4 18 ...
2: 0 0 1 3 12 46 ...
1: 0 1 2 7 24 89 ...
0: 1 1 3 9 31 113 ...
-------------------------
k/n:0 1 2 3 4 5 ...
The recurrence for this version is: U(0,0)=1, U(n,k)=0 for k>n or k<0; U(n,k) = U(n,k+1) + U(n-1,k+1) + U(n,k-1). E.g. 46 = 18 + 4 + 24. Also U(n,0) = A052709(n-1).
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- James East, Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
- N. J. A. Sloane, Rows 0 through 100
- N. J. A. Sloane, Illustration of the initial terms of the U(n,k) array
-
U:=proc(n,k) option remember;
if (n < 0) then RETURN(0);
elif (n=0) then
if (k=0) then RETURN(1); else RETURN(0); fi;
elif (k>n or k<0) then RETURN(0);
else RETURN(U(n,k+1)+U(n-1,k+1)+U(n-1,k-1));
fi;
end;
for n from 0 to 20 do
lprint( [seq(U(n,n-i),i=0..n)] );
od:
-
t[0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, k] + t[n-1, k-2]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after N. J. A. Sloane *)
A071946
Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R = (1,0), V = (0,1) and D = (3,1).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 6, 13, 19, 19, 1, 8, 23, 44, 63, 63, 1, 10, 37, 87, 156, 219, 219, 1, 12, 55, 155, 330, 568, 787, 787, 1, 14, 77, 255, 629, 1260, 2110, 2897, 2897, 1, 16, 103, 395, 1111, 2527, 4856, 7972, 10869, 10869, 1, 18, 133, 583, 1849, 4706, 10130, 18889, 30545, 41414, 41414
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 2;
1, 4, 6, 6;
1, 6, 13, 19, 19;
...
-
T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
`if`(k<0 or nAlois P. Heinz, May 05 2023
-
T[n_, k_] := T[n, k] = If[n == 0 && k == 0, 1,
If[k < 0 || n < k, 0, T[n-1, k] + T[n, k-1] + T[n-3, k-1]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 25 2025, after Alois P. Heinz *)
A334016
Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only right, diagonal up-right, and diagonal up-left moves.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 4, 10, 21, 35, 8, 25, 65, 139, 237, 16, 60, 179, 451, 978, 1684, 32, 140, 470, 1337, 3339, 7239, 12557, 64, 320, 1189, 3725, 10325, 25559, 55423, 96605, 128, 720, 2926, 9958, 30018, 81716, 200922, 435550, 761938, 256, 1600, 7048, 25802, 83518
Offset: 1
Table begins:
n\k| 1 2 3 4 5 6 7 8
---+------------------------------------------------------------
1| 1 1 6 35 237 1684 12557 96605
2| 1 4 21 139 978 7239 55423 435550
3| 2 10 65 451 3339 25559 200922 1611624
4| 4 25 179 1337 10325 81716 658918 5394051
5| 8 60 470 3725 30018 245220 2027447 16935981
6| 16 140 1189 9958 83518 703635 5961973 50811786
7| 32 320 2926 25802 224831 1951587 16938814 147261146
8| 64 720 7048 65241 589701 5269220 46826316 415175289
For example, the T(2,2) = 4 valid sequences of moves from (1,1) to (2,2) are:
(1,1) -> (2,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (3,1) -> (2,2),
(1,1) -> (2,2), and
(1,1) -> (3,1) -> (2,2).
Cf.
A035002 (up, right),
A059450 (right, up-left),
A132439 (up, right, up-right),
A279212 (up, right, up-right, up-left),
A334017 (up, right, up-left).
A071945 is the analog for king moves. For both king and queen moves,
A094727 is the length of the longest sequence of moves.
Showing 1-6 of 6 results.
Comments