A079856 Duplicate of A073329.
2, 10, 60, 420, 4290, 53130, 903210, 17687670, 406816410, 11125544430
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Table begins: 1 - 2 3 5 7 11 13 17 19 23 29 ... - 4 6 9 10 14 15 21 22 25 26 ... - 8 12 18 20 27 28 30 42 44 45 ... - 16 24 36 40 54 56 60 81 84 88 ... - 32 48 72 80 108 112 120 162 168 176 ... - 64 96 144 160 216 224 240 324 336 352 ...
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *) AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ AlmostPrime[k, n - k + 1], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v *) mx = 11; arr = NestList[Take[Union@Flatten@Outer[Times, #, primes], mx] &, primes = Prime@Range@mx, mx]; Prepend[Flatten@Table[arr[[k, n - k + 1]], {n, mx}, {k, n}], 1] (* Ivan Neretin, Apr 30 2016 *) (* The next code skips the initial 1. *) width = 15; (seq = Table[ Rest[NestList[1 + NestWhile[# + 1 &, #, ! PrimeOmega[#] == z &] &, 2^z, width - z + 1]] - 1, {z, width}]) // TableForm Flatten[Map[Reverse[Diagonal[Reverse[seq], -width + #]] &, Range[width]]] (* Peter J. C. Moses, Jun 05 2019 *) Grid[Table[Select[Range[200], PrimeOmega[#] == n &], {n, 0, 7}]] (* Clark Kimberling, Nov 17 2024 *)
T(n,k)=if(k<0,0,s=1; while(sum(i=1,s,if(bigomega(i)-n,0,1))
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi, prime def A078840_T(n,k): if n == 1: return prime(k) def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(k-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
The table begins: n\k| 1 2 3 4 5 6 ... ---+------------------------------------- 1 | 2, 3, 4, 5, 7, 8, ... 2 | 6, 10, 12, 14, 15, ... 3 | 30, 42, 60, 66, ... 4 | 210, 330, 390, ... 5 | 2310, 2730, ... 6 | 30030, ... ...| ...
f[n_, m_] := f[n, m] = Block[{c = m, k = If[m == 1, Product[Prime[i], {i, n}], f[n, m - 1] + 1]},While[Length@FactorInteger[k] != n, k++ ];k];Table[f[d - m + 1, m], {d, 10}, {m, d}] // Flatten (* Ray Chandler, Feb 08 2007 *)
A125666(n, k=0)={if(k, for(m=vecprod(primes(n)), oo, omega(m)!=n || k-- || return(m)), A125666(A004736(n), A002260(n)))} \\ M. F. Hasler, Jun 06 2024
2; 6, 10; 30, 42, 60; 210, 330, 390, 420; ...
f[n_] := Flatten[Table[ # [[1]]] & /@ FactorInteger[n]]; (* for n=7 *) Take[ Select[ Range[10^7], Length[f[ # ]] == 7 & ], 7] Module[{nn=8,dpf=Table[{n,PrimeNu[n]},{n,2 10^7}]},Flatten[Table[Select[dpf,#[[2]]==n&,n],{n,nn}],1][[All,1]]] (* The program generates the first 36 terms of the sequence. *) (* Harvey P. Dale, Sep 09 2022 *)
a(1) = A000040(1) = 2. a(2) = A006881(2) = 10. a(3) = A007304(3) = 66. a(4) = A046386(4) = 462. a(5) = A046387(5) = 4290. a(6) = A067885(6) = 53130. a(7) = A123321(7) = 903210. a(8) = A123322(8) = 17687670. a(9) = A115343(9) = 406816410. a(10) = A281222(10) = 11125544430.
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A340467(n): if n == 1: return 2 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
Comments