A074095 Duplicate of A048692.
2, 6, 10, 30, 42, 60, 210, 330, 390, 420, 2310, 2730, 3570, 3990, 4290, 30030, 39270
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Table begins: 1 - 2 3 5 7 11 13 17 19 23 29 ... - 4 6 9 10 14 15 21 22 25 26 ... - 8 12 18 20 27 28 30 42 44 45 ... - 16 24 36 40 54 56 60 81 84 88 ... - 32 48 72 80 108 112 120 162 168 176 ... - 64 96 144 160 216 224 240 324 336 352 ...
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *) AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ AlmostPrime[k, n - k + 1], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v *) mx = 11; arr = NestList[Take[Union@Flatten@Outer[Times, #, primes], mx] &, primes = Prime@Range@mx, mx]; Prepend[Flatten@Table[arr[[k, n - k + 1]], {n, mx}, {k, n}], 1] (* Ivan Neretin, Apr 30 2016 *) (* The next code skips the initial 1. *) width = 15; (seq = Table[ Rest[NestList[1 + NestWhile[# + 1 &, #, ! PrimeOmega[#] == z &] &, 2^z, width - z + 1]] - 1, {z, width}]) // TableForm Flatten[Map[Reverse[Diagonal[Reverse[seq], -width + #]] &, Range[width]]] (* Peter J. C. Moses, Jun 05 2019 *) Grid[Table[Select[Range[200], PrimeOmega[#] == n &], {n, 0, 7}]] (* Clark Kimberling, Nov 17 2024 *)
T(n,k)=if(k<0,0,s=1; while(sum(i=1,s,if(bigomega(i)-n,0,1))
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi, prime def A078840_T(n,k): if n == 1: return prime(k) def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(k-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
The table begins: n\k| 1 2 3 4 5 6 ... ---+------------------------------------- 1 | 2, 3, 4, 5, 7, 8, ... 2 | 6, 10, 12, 14, 15, ... 3 | 30, 42, 60, 66, ... 4 | 210, 330, 390, ... 5 | 2310, 2730, ... 6 | 30030, ... ...| ...
f[n_, m_] := f[n, m] = Block[{c = m, k = If[m == 1, Product[Prime[i], {i, n}], f[n, m - 1] + 1]},While[Length@FactorInteger[k] != n, k++ ];k];Table[f[d - m + 1, m], {d, 10}, {m, d}] // Flatten (* Ray Chandler, Feb 08 2007 *)
A125666(n, k=0)={if(k, for(m=vecprod(primes(n)), oo, omega(m)!=n || k-- || return(m)), A125666(A004736(n), A002260(n)))} \\ M. F. Hasler, Jun 06 2024
a(1) = 510510 = 2*3*5*7*11*13*17 = A002110(7).
f7Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f7Q[n], AppendTo[lst, n]], {n, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *) Select[Range[1600000],PrimeNu[#]==7&&SquareFreeQ[#]&] (* Harvey P. Dale, Sep 19 2013 *)
is(n)=omega(n)==7 && bigomega(n)==7 \\ Hugo Pfoertner, Dec 18 2018
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A123321(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,7))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
a(1) = 9699690 = 2*3*5*7*11*13*17*19 = A002110(8).
N:= 3*10^7: # to get all terms <= N pmax:= floor(N/mul(ithprime(i),i=1..7)): Primes:= select(isprime,[2,seq(i,i=3..pmax,2)]): sort(select(`<`,map(convert,combinat:-choose(Primes,8),`*`),N)); # Robert Israel, Dec 18 2018
f8Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f8Q[n], AppendTo[lst, n]], {n, 10!, 11!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *) Take[ Sort[ Times @@@ Subsets[ Prime@ Range@ 15, {8}]], 22] (* Robert G. Wilson v, Dec 18 2018 *)
is(n)=issquarefree(n)&&omega(n)==8 \\ Charles R Greathouse IV, Feb 01 2017, corrected (following an observation from Zak Seidov) by M. F. Hasler, Dec 19 2018
is(n) = my(f = factor(n)); omega(f) == 8 && bigomega(f) == 8 \\ David A. Corneth, Dec 18 2018
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A123322(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,8))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
a(1) = 2 because 2 is the first number to have one prime factor. a(2) = 10 because 10 is the second number to have two prime factors; 6 is the first. a(3) = 60 = 2*2*3*5 because 60 is the third number to have three prime factors (2,3,5); 30 is the first and 42 is the second.
is(n) = omega(n) == 8
A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v) list(lim,pr=8)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
Comments