cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A074095 Duplicate of A048692.

Original entry on oeis.org

2, 6, 10, 30, 42, 60, 210, 330, 390, 420, 2310, 2730, 3570, 3990, 4290, 30030, 39270
Offset: 1

Views

Author

Keywords

A079855 Duplicate of A048692.

Original entry on oeis.org

2, 6, 10, 30, 42, 60, 210, 330, 390, 420, 2310, 2730, 3570, 3990, 4290, 30030, 39270
Offset: 1

Views

Author

Keywords

A078840 Table of n-almost-primes T(n,k) (n >= 0, k > 0), read by antidiagonals, starting at T(0,1)=1 followed by T(1,1)=2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 12, 16, 11, 10, 18, 24, 32, 13, 14, 20, 36, 48, 64, 17, 15, 27, 40, 72, 96, 128, 19, 21, 28, 54, 80, 144, 192, 256, 23, 22, 30, 56, 108, 160, 288, 384, 512, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024, 31, 26, 44, 81, 120, 224, 432, 640, 1152
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

An n-almost-prime is a positive integer that has exactly n prime factors.
This sequence is a rearrangement of the natural numbers. - Robert G. Wilson v, Feb 11 2006
Each antidiagonal begins with the n-th prime and ends with 2^n.
From Eric Desbiaux, Jun 27 2009: (Start)
(A001222 gives this sequence)
A001221 gives another table:
1
- 2 3 4 5 7 8 9 11 ... A000961
- 6 10 12 14 15 18 20 21 ... A007774
- 30 42 60 66 70 78 84 90 ... A033992
- 210 330 390 420 462 510 546 570 ... A033993
- 2310 2730 3570 3990 4290 4620 4830 5460 ... A051270
Antidiagonals begin with A000961 and end with A002110.
Diagonal is A073329 which is last term in n-th row of A048692. (End)

Examples

			Table begins:
  1
  -  2  3   5   7  11  13  17  19  23  29 ...
  -  4  6   9  10  14  15  21  22  25  26 ...
  -  8 12  18  20  27  28  30  42  44  45 ...
  - 16 24  36  40  54  56  60  81  84  88 ...
  - 32 48  72  80 108 112 120 162 168 176 ...
  - 64 96 144 160 216 224 240 324 336 352 ...
		

Crossrefs

T(1, k)=A000040(k), T(2, k)=A001358(k), T(3, k)=A014612(k), T(4, k)=A014613(k), T(5, k)=A014614(k), T(6, k)=A046306(k), T(7, k)=A046308(k), T(8, k)=A046310(k), T(9, k)=A046312(k), T(10, k)=A046314(k).
T(11, k)=A069272(k), T(12, k)=A069273(k), T(13, k)=A069274(k), T(14, k)=A069275(k), T(15, k)=A069276(k), T(16, k)=A069277(k), T(17, k)=A069278(k), T(18, k)=A069279(k), T(19, k)=A069280(k), T(20, k)=A069281(k).
T(k, 1)=A000079(k), T(k, 2)=A007283(k), T(k, 3)=A116453(k), T(k, k)=A101695(k), T(k, k+1)=A078841(k).
A091538 is this sequence with zeros inserted, making a square array.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ AlmostPrime[k, n - k + 1], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v *)
    mx = 11; arr = NestList[Take[Union@Flatten@Outer[Times, #, primes], mx] &, primes = Prime@Range@mx, mx]; Prepend[Flatten@Table[arr[[k, n - k + 1]], {n, mx}, {k, n}], 1] (* Ivan Neretin, Apr 30 2016 *)
    (* The next code skips the initial 1. *)
    width = 15; (seq = Table[
      Rest[NestList[1 + NestWhile[# + 1 &, #, ! PrimeOmega[#] == z &] &,
      2^z, width - z + 1]] - 1, {z, width}]) // TableForm
    Flatten[Map[Reverse[Diagonal[Reverse[seq], -width + #]] &, Range[width]]]
    (* Peter J. C. Moses, Jun 05 2019 *)
    Grid[Table[Select[Range[200], PrimeOmega[#] == n &], {n, 0, 7}]]
    (* Clark Kimberling, Nov 17 2024 *)
  • PARI
    T(n,k)=if(k<0,0,s=1; while(sum(i=1,s,if(bigomega(i)-n,0,1))
    				
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, prime
    def A078840_T(n,k):
        if n == 1: return prime(k)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(k-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Extensions

Edited by Robert G. Wilson v, Feb 11 2006

A125666 Table read by ascending antidiagonals: n-th row of table consists of the positive integers divisible by exactly n distinct primes.

Original entry on oeis.org

2, 6, 3, 30, 10, 4, 210, 42, 12, 5, 2310, 330, 60, 14, 7, 30030, 2730, 390, 66, 15, 8, 510510, 39270, 3570, 420, 70, 18, 9, 9699690, 570570, 43890, 3990, 462, 78, 20, 11, 223092870, 11741730, 690690, 46410, 4290, 510, 84, 21, 13, 6469693230, 281291010
Offset: 1

Views

Author

Leroy Quet, Jan 29 2007

Keywords

Comments

Concatenated sequence is a permutation of the integers >= 2.
The chosen encoding of the table by *rising* antidiagonals is contrary to the OEIS standard which rather expects falling antidiagonals: as a consequence, displaying this sequence as a table (2nd link after the list of terms above) will list the integers with given number of prime divisors in columns rather than rows. - M. F. Hasler, Jun 06 2024

Examples

			The table begins:
  n\k|     1     2    3    4    5    6  ...
  ---+-------------------------------------
   1 |     2,    3,   4,   5,   7,   8, ...
   2 |     6,   10,  12,  14,  15, ...
   3 |    30,   42,  60,  66, ...
   4 |   210,  330, 390, ...
   5 |  2310, 2730, ...
   6 | 30030,  ...
  ...|   ...
		

Crossrefs

Cf. A001221, A002110 (col 1), A246655 (row 1), A007774 (row 2), A033992 (row 3), A033993 (row 4), A051270 (row 5), A074969 (row 6), A176655 (row 7), A348072 (row 8), A348073 (row 9), A073329 (diag), compare to A048692.

Programs

  • Mathematica
    f[n_, m_] := f[n, m] = Block[{c = m, k = If[m == 1, Product[Prime[i], {i, n}], f[n, m - 1] + 1]},While[Length@FactorInteger[k] != n, k++ ];k];Table[f[d - m + 1, m], {d, 10}, {m, d}] // Flatten (* Ray Chandler, Feb 08 2007 *)
  • PARI
    A125666(n, k=0)={if(k, for(m=vecprod(primes(n)), oo, omega(m)!=n || k-- || return(m)), A125666(A004736(n), A002260(n)))} \\ M. F. Hasler, Jun 06 2024

Extensions

Extended by Ray Chandler, Feb 08 2007

A123321 Products of 7 distinct primes (squarefree 7-almost primes).

Original entry on oeis.org

510510, 570570, 690690, 746130, 870870, 881790, 903210, 930930, 1009470, 1067430, 1111110, 1138830, 1193010, 1217370, 1231230, 1272810, 1291290, 1345890, 1360590, 1385670, 1411410, 1438710, 1452990, 1504230, 1540770
Offset: 1

Views

Author

Rick L. Shepherd, Sep 25 2006

Keywords

Comments

Intersection of A005117 and A046308.
Intersection of A005117 and A176655. - R. J. Mathar, Dec 05 2016

Examples

			a(1) = 510510 = 2*3*5*7*11*13*17 = A002110(7).
		

Crossrefs

Cf. A005117, A046308, A048692, Squarefree k-almost primes: A000040 (k=1), A006881 (k=2), A007304 (k=3), A046386 (k=4), A046387 (k=5), A067885 (k=6), A123322 (k=8), A115343 (k=9).

Programs

  • Mathematica
    f7Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f7Q[n], AppendTo[lst, n]], {n, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
    Select[Range[1600000],PrimeNu[#]==7&&SquareFreeQ[#]&] (* Harvey P. Dale, Sep 19 2013 *)
  • PARI
    is(n)=omega(n)==7 && bigomega(n)==7 \\ Hugo Pfoertner, Dec 18 2018
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A123321(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,7)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Aug 26 2008

A123322 Products of 8 distinct primes (squarefree 8-almost primes).

Original entry on oeis.org

9699690, 11741730, 13123110, 14804790, 15825810, 16546530, 17160990, 17687670, 18888870, 20030010, 20281170, 20930910, 21111090, 21411390, 21637770, 21951930, 23130030, 23393370, 23993970, 24534510, 25555530, 25571910
Offset: 1

Views

Author

Rick L. Shepherd, Sep 25 2006

Keywords

Comments

Intersection of A005117 and A046310.

Examples

			a(1) = 9699690 = 2*3*5*7*11*13*17*19 = A002110(8).
		

Crossrefs

Cf. A001221, A001222, A005117, A046310, A048692, Squarefree k-almost primes: A000040 (k=1), A006881 (k=2), A007304 (k=3), A046386 (k=4), A046387 (k=5), A067885 (k=6), A123321 (k=7), A115343 (k=9).

Programs

  • Maple
    N:= 3*10^7: # to get all terms  <= N
    pmax:= floor(N/mul(ithprime(i),i=1..7)):
    Primes:= select(isprime,[2,seq(i,i=3..pmax,2)]):
    sort(select(`<`,map(convert,combinat:-choose(Primes,8),`*`),N)); # Robert Israel, Dec 18 2018
  • Mathematica
    f8Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f8Q[n], AppendTo[lst, n]], {n, 10!, 11!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
    Take[ Sort[ Times @@@ Subsets[ Prime@ Range@ 15, {8}]], 22] (* Robert G. Wilson v, Dec 18 2018 *)
  • PARI
    is(n)=issquarefree(n)&&omega(n)==8 \\ Charles R Greathouse IV, Feb 01 2017, corrected (following an observation from Zak Seidov) by M. F. Hasler, Dec 19 2018
    
  • PARI
    is(n) = my(f = factor(n)); omega(f) == 8 && bigomega(f) == 8 \\ David A. Corneth, Dec 18 2018
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A123322(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,8)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Extensions

Edited by Robert Israel, Dec 18 2018

A073329 a(n) is the n-th number to have n distinct prime factors.

Original entry on oeis.org

2, 10, 60, 420, 4290, 53130, 903210, 17687670, 406816410, 11125544430, 338431883790, 11833068917670, 457077357006270, 20384767656323070, 955041577211912190, 49230430891074322890, 2740956243836856315270, 168909608387276001835590, 11054926927790884163355330
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2002

Keywords

Examples

			a(1) = 2 because 2 is the first number to have one prime factor.
a(2) = 10 because 10 is the second number to have two prime factors; 6 is the first.
a(3) = 60 = 2*2*3*5 because 60 is the third number to have three prime factors (2,3,5); 30 is the first and 42 is the second.
		

Crossrefs

a(n) is last term in n-th row of A048692.

Formula

A001221(a(n)) = n <= A001222(a(n)). - Alois P. Heinz, Jan 09 2021

Extensions

Edited by Dean Hickerson, Nov 03 2002
More terms from Sascha Kurz, Jan 03 2003
Corrected from a(9) onwards by T. D. Noe, Dec 01 2004
More terms from David A. Corneth, Jan 09 2021

A348072 Numbers k such that omega(k) = 8.

Original entry on oeis.org

9699690, 11741730, 13123110, 14804790, 15825810, 16546530, 17160990, 17687670, 18888870, 19399380, 20030010, 20281170, 20930910, 21111090, 21411390, 21637770, 21951930, 23130030, 23393370, 23483460, 23993970, 24534510, 25555530, 25571910, 26193090, 26246220, 26816790, 26996970
Offset: 1

Views

Author

David A. Corneth, Oct 10 2021

Keywords

Crossrefs

Row 8 of A125666.

Programs

  • PARI
    is(n) = omega(n) == 8
    
  • PARI
    A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v)
    list(lim,pr=8)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
Showing 1-8 of 8 results.