A341280 Numbers k such that A073837(k) is a multiple of k.
1, 4, 6, 8, 10, 12, 17, 20, 31, 34, 52, 85, 92, 555, 1723, 2870, 2904, 3943, 19325, 41708, 145474, 225476, 240632, 666862, 8911645, 10249751, 138543006, 209659550, 265831784, 540388470, 949428097, 2813155218, 12323589092, 407224380494, 1704233306223, 3361207818001
Offset: 1
Keywords
Examples
a(3) = 6 is a term because A073837(6) = 7+11 = 18 is divisible by 6.
Crossrefs
Cf. A073837.
Programs
-
Maple
R:= 1: S:= [2,3]: s:= 5: q:= 5: count:= 1: for n from 3 while count < 24 do if n = S[1]+1 then S:= S[2..-1]; s:= s-n+1 fi; if q <= 2*n then S:= [op(S), q]; s:= s+q; q:= nextprime(q) fi; if s mod n = 0 then count:= count+1; R:= R, n fi; od: R;
-
Python
from sympy import isprime k, k2, d, A341280_list = 1, 3, 2, [] while k < 10**10: if d % k == 0: A341280_list.append(k) if isprime(k): d -= k if isprime(k2): d += k2 k += 1 k2 += 2 # Chai Wah Wu, Feb 16 2021
Extensions
a(26)-a(31) from Chai Wah Wu, Feb 16 2021
a(32) from Chai Wah Wu, Feb 17 2021
a(33)-a(36) from Martin Ehrenstein, Feb 21 2021
Comments