cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008998 a(n) = 2*a(n-1) + a(n-3), with a(0)=1 and a(1)=2.

Original entry on oeis.org

1, 2, 4, 9, 20, 44, 97, 214, 472, 1041, 2296, 5064, 11169, 24634, 54332, 119833, 264300, 582932, 1285697, 2835694, 6254320, 13794337, 30424368, 67103056, 148000449, 326425266, 719953588, 1587907625, 3502240516, 7724434620, 17036776865, 37575794246
Offset: 0

Views

Author

Keywords

Comments

A transform of A000079 under the mapping g(x)->(1/(1-x^3))g(x/(1-x^3)). - Paul Barry, Oct 20 2004
The binomial transform yields 1,3,9,..., i.e., A049220 without the leading zeros. - R. J. Mathar, May 15 2008
a(n-3) is the top left entry of the n-th power of the 3 X 3 matrix [0, 0, 1; 1, 1, 1; 0, 1, 1] or of the 3 X 3 matrix [0, 1, 0; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) equals the number of n-length words on {0,1,2} such that 0 appears only in a run which length is a multiple of 3. - Milan Janjic, Feb 17 2015
a(n) is the number of ways to fill a 1 X n strip of tiles, using only trominos, of length 3, and squares which can be chosen to have one of two possible colors. - Michael Tulskikh, Feb 12 2020
For x the real root of x^3 - 2*x^2 - 1 from A356035, then x^n = a(n-4)*x^2 + a(n-2)*x + a(n-3). - Greg Dresden and Qianhuai He, Jul 01 2025

Crossrefs

Cf. A077852, A077926. Partial sums of A052980.

Programs

  • GAP
    a:=[1,2,4];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-3]; od; a; # G. C. Greubel, Feb 14 2020
  • Magma
    [ n eq 1 select 1 else n eq 2 select 2 else n eq 3 select 4 else 2*Self(n-1)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A008998 := proc(n) option remember; if n <= 2 then 2^n else 2*procname(n-1) +procname(n-3); fi; end proc;
  • Mathematica
    LinearRecurrence[{2, 0, 1}, {1, 2, 4}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,((1+sqrt(1+x+x*O(x^n)))^m + (1-sqrt(1+x+x*O(x^n)))^m)*x^m/m)),n)} /* Paul D. Hanna, Dec 21 2012 */
    
  • Sage
    def A008998_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-x^3) ).list()
    A008998_list(40) # G. C. Greubel, Feb 14 2020
    

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2k, k)*2^(n-3k). - Paul Barry, Oct 20 2004
O.g.f.: 1/(1-2*x-x^3). - R. J. Mathar, May 15 2008
O.g.f.: exp( Sum_{n>=1} ( (1 + sqrt(1+x))^n + (1 - sqrt(1+x))^n ) * x^n/n ). - Paul D. Hanna, Dec 21 2012
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + x^2)/( x*(4*k+4 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = Sum_{k=0..n} A052980(n). - Greg Dresden, May 28 2020

A001169 Number of board-pile polyominoes with n cells.

Original entry on oeis.org

1, 2, 6, 19, 61, 196, 629, 2017, 6466, 20727, 66441, 212980, 682721, 2188509, 7015418, 22488411, 72088165, 231083620, 740754589, 2374540265, 7611753682, 24400004911, 78215909841, 250726529556, 803721298537, 2576384425157, 8258779154250, 26474089989299
Offset: 1

Views

Author

Keywords

Comments

The inverse binomial transform is 1,1,3,6,..., i.e., the unsigned version of A077926. - R. J. Mathar, May 15 2008
a(n+1)/a(n) tends to a limit which is equal to the largest real root of the denominator of the g.f., 3.20556943040... = A246773 . - Robert G. Wilson v, Feb 01 2015

References

  • W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, p. 259.

Crossrefs

Cf. A049219, A049220 (partial sums), A049221, A049222, A246773, A273895.

Programs

  • Magma
    I:=[1,2,6,19,61]; [n le 5 select I[n] else 5*Self(n-1)-7*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
  • Mathematica
    a[n_] := a[n] = If[n<5, {1, 2, 6, 19}[[n]], 5a[n-1] - 7a[n-2] + 4a[n-3]]; Table[a[n], {n, 30}]
    Join[{1},LinearRecurrence[{5,-7,4},{2,6,19},40]] (* Harvey P. Dale, Sep 11 2014 *)
    Rest@ CoefficientList[ Series[x (1 - x)^3/(1 - 5x + 7x^2 - 4x^3), {x, 0, 28}], x] (* Robert G. Wilson v, Feb 01 2015 *)
  • Maxima
    makelist(sum(sum(binomial(k,i)*binomial(n+2*i-1,4*k-i),i,0,k),k,0,n-1),n,0,24); /* Emanuele Munarini, May 19 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( x * (1 - x)^3 / (1 - 5*x + 7*x^2 - 4*x^3) + x * O(x^n), n))}; /* Michael Somos, Jun 02 2016 */
    

Formula

G.f.: x*(1-x)^3/(1 - 5*x + 7*x^2 - 4*x^3). - Simon Plouffe in his 1992 dissertation
a(n) = 5*a(n-1) - 7*a(n-2) + 4*a(n-3) for n >= 5.
a(n) = sum(k=0..n-1, sum(i=0..k, binomial(k,i)*binomial(n+2*i-1,4*k-i))). - Emanuele Munarini, May 19 2011
a(n) = a(n-1) + A049219(n) + A049220(n) for n >= 2.
Row sums of A273895. - Michael Somos, Jun 02 2016

Extensions

More terms from Dean Hickerson

A202193 Triangle read by rows: T(n,m) = coefficient of x^n in expansion of (x/(1 - x - x^2 - x^3 - x^4))^m.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 15, 28, 25, 14, 5, 1, 29, 62, 66, 44, 20, 6, 1, 56, 136, 165, 129, 70, 27, 7, 1, 108, 294, 401, 356, 225, 104, 35, 8, 1, 208, 628, 951, 944, 676, 363, 147, 44, 9, 1, 401, 1328, 2211, 2424, 1935, 1176, 553, 200, 54, 10, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Dec 14 2011

Keywords

Comments

From Philippe Deléham, Feb 16 2014: (Start)
As a Riordan array, this is (1/(1 - x - x^2 - x^3 - x^4), x/(1 - x - x^2 - x^3 - x^4)).
T(n,0) = A000078(n+3); T(n+1,1) = A118898(n+4).
Row sums are A103142(n).
Diagonal sums are A077926(n)*(-1)^n.
Tetranacci convolution triangle. (End)

Examples

			Triangle begins:
   1;
   1,  1;
   2,  2,  1;
   4,  5,  3,  1;
   8, 12,  9,  4,  1;
  15, 28, 25, 14,  5,  1;
  29, 62, 66, 44, 20,  6,  1;
		

Crossrefs

Similar sequences : A037027 (Fibonacci convolution triangle), A104580 (tribonacci convolution triangle). - Philippe Deléham, Feb 16 2014

Programs

  • Maxima
    T(n,m):=if n=m then 1 else sum(sum((-1)^i*binomial(k,k-i)*binomial(n-m-4*i-1,k-1),i,0,(n-m-k)/4)*binomial(k+m-1,m-1),k,1,n-m);

Formula

T(n,m) = Sum_{k=1..n-m} (Sum_{i=0..floor((n-m-k)/4)} (-1)^i*binomial(k,k-i)*binomial(n-m-4*i-1,k-1))*binomial(k+m-1,m-1), n > m, T(n,n)=1.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-3,k) + T(n-4,k), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Feb 16 2014
G.f. for column m: (x/(1 - x - x^2 - x^3 - x^4))^m. - Jason Yuen, Feb 17 2025
Showing 1-3 of 3 results.