cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A141016 Duplicate of A008998.

Original entry on oeis.org

0, 1, 2, 4, 9, 20, 44, 97, 214, 472, 1041, 2296, 5064, 11169, 24634, 54332
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 11 2008

Keywords

A013609 Triangle of coefficients in expansion of (1+2*x)^n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) with steps (1,0) and two kinds of steps (1,1). The number of paths with steps (1,0) and s kinds of steps (1,1) corresponds to the expansion of (1+s*x)^n. - Joerg Arndt, Jul 01 2011
Also sum of rows in A046816. - Lior Manor, Apr 24 2004
Also square array of unsigned coefficients of Chebyshev polynomials of second kind. - Philippe Deléham, Aug 12 2005
The rows give the number of k-simplices in the n-cube. For example, 1, 6, 12, 8 shows that the 3-cube has 1 volume, 6 faces, 12 edges and 8 vertices. - Joshua Zucker, Jun 05 2006
Triangle whose (i, j)-th entry is binomial(i, j)*2^j.
With offset [1,1] the triangle with doubled numbers, 2*a(n,m), enumerates sequences of length m with nonzero integer entries n_i satisfying sum(|n_i|) <= n. Example n=4, m=2: [1,3], [3,1], [2,2] each in 2^2=4 signed versions: 2*a(4,2) = 2*6 = 12. The Sum over m (row sums of 2*a(n,m)) gives 2*3^(n-1), n >= 1. See the W. Lang comment and a K. A. Meissner reference under A024023. - Wolfdieter Lang, Jan 21 2008
n-th row of the triangle = leftmost column of nonzero terms of X^n, where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (2,2,2,...) in the subdiagonal. - Gary W. Adamson, Jul 19 2008
Numerators of a matrix square-root of Pascal's triangle A007318, where the denominators for the n-th row are set to 2^n. - Gerald McGarvey, Aug 20 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
The triangle sums (see A180662 for their definitions) link the Pell-Jacobsthal triangle, whose mirror image is A038207, with twenty-four different sequences; see the crossrefs.
This triangle may very well be called the Pell-Jacobsthal triangle in view of the fact that A000129 (Kn21) are the Pell numbers and A001045 (Kn11) the Jacobsthal numbers.
(End)
T(n,k) equals the number of n-length words on {0,1,2} having n-k zeros. - Milan Janjic, Jul 24 2015
T(n-1,k-1) is the number of 2-compositions of n with zeros having k positive parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
T(n,k) is the number of chains 0=x_0Geoffrey Critzer, Oct 01 2022
Excluding the initial 1, T(n,k) is the number of k-faces of a regular n-cross polytope. See A038207 for n-cube and A135278 for n-simplex. - Mohammed Yaseen, Jan 14 2023

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,   4;
  1,  6,  12,    8;
  1,  8,  24,   32,   16;
  1, 10,  40,   80,   80,    32;
  1, 12,  60,  160,  240,   192,    64;
  1, 14,  84,  280,  560,   672,   448,    128;
  1, 16, 112,  448, 1120,  1792,  1792,   1024,    256;
  1, 18, 144,  672, 2016,  4032,  5376,   4608,   2304,    512;
  1, 20, 180,  960, 3360,  8064, 13440,  15360,  11520,   5120,  1024;
  1, 22, 220, 1320, 5280, 14784, 29568,  42240,  42240,  28160, 11264,  2048;
  1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096;
From _Peter Bala_, Apr 20 2012: (Start)
The triangle can be written as the matrix product A038207*(signed version of A013609).
  |.1................||.1..................|
  |.2...1............||-1...2..............|
  |.4...4...1........||.1..-4...4..........|
  |.8..12...6...1....||-1...6...-12...8....|
  |16..32..24...8...1||.1..-8....24.-32..16|
  |..................||....................|
(End)
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
  • G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.

Crossrefs

Cf. A007318, A013610, etc.
Appears in A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
Triangle sums (see the comments): A000244 (Row1); A000012 (Row2); A001045 (Kn11); A026644 (Kn12); 4*A011377 (Kn13); A000129 (Kn21); A094706 (Kn22); A099625 (Kn23); A001653 (Kn3); A007583 (Kn4); A046717 (Fi1); A007051 (Fi2); A077949 (Ca1); A008998 (Ca2); A180675 (Ca3); A092467 (Ca4); A052942 (Gi1); A008999 (Gi2); A180676 (Gi3); A180677 (Gi4); A140413 (Ze1); A180678 (Ze2); A097117 (Ze3); A055588 (Ze4).
(End)
T(2n,n) gives A059304.

Programs

  • Haskell
    a013609 n = a013609_list !! n
    a013609_list = concat $ iterate ([1,2] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Haskell
    a013609 n k = a013609_tabl !! n !! k
    a013609_row n = a013609_tabl !! n
    a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
    
  • Magma
    [2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
    
  • Maple
    bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
  • Mathematica
    Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *)
    BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
  • Maxima
    a(n,k):=coeff(expand((1+2*x)^n),x^k);
    create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • Sage
    flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021

Formula

G.f.: 1 / (1 - x*(1+2*y)).
T(n,k) = 2^k*binomial(n,k).
T(n,k) = 2*T(n-1,k-1) + T(n-1,k). - Jon Perry, Nov 22 2005
Row sums are 3^n = A000244(n). - Joerg Arndt, Jul 01 2011
T(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i). - Mircea Merca, Apr 28 2012
E.g.f.: exp(2*y*x + x). - Geoffrey Critzer, Nov 12 2012
Riordan array (x/(1 - x), 2*x/(1 - x)). Exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(1 + 6*x + 12*x^2/2! + 8*x^3/3!) = 1 + 8*x + 40*x^2/2! + 160*x^3/3! + 560*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), 2*x/(1 - x)). - Peter Bala, Dec 21 2014
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 3^j. - Kolosov Petro, Jan 28 2019
T(n,k) = 2*(n+1-k)*T(n,k-1)/k, T(n,0) = 1. - Alexander R. Povolotsky, Oct 08 2023
For n >= 1, GCD(T(n,1), ..., T(n,n)) = GCD(T(n,1),T(n,n)) = GCD(2*n,2^n) = A171977(n). - Pontus von Brömssen, Nov 01 2024

A052980 Expansion of (1 - x)/(1 - 2*x - x^3).

Original entry on oeis.org

1, 1, 2, 5, 11, 24, 53, 117, 258, 569, 1255, 2768, 6105, 13465, 29698, 65501, 144467, 318632, 702765, 1549997, 3418626, 7540017, 16630031, 36678688, 80897393, 178424817, 393528322, 867954037, 1914332891, 4222194104, 9312342245, 20539017381, 45300228866
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) counts permutations of length n which embed into the (infinite) increasing oscillating sequence given by 4,1,6,3,8,5,...,2k+2,2k-1,...; these are also the permutations which avoid {321, 2341, 3412, 4123}. - Vincent Vatter, May 23 2008
a(n) is the top left entry of the n-th power of any of the 3X3 matrices [1, 1, 0; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 0, 1, 0] or [1, 1, 1; 0, 0, 1; 1, 0, 1] or [1, 0, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the number of possible tilings of a 2 X n board, using dominoes and L-shaped trominoes. - Michael Tulskikh, Aug 21 2019
a(n) = A190512(n-1) for n>0. - Greg Dresden, Feb 28 2020

References

  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.

Crossrefs

See A190512 and A110513 for other versions of this sequence.
Column k=2 of A219987.
Cf. A008998.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-3): n in [1..40]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 32); Coefficients(R!( (1 - x)/(1 - 2*x - x^3))); // Marius A. Burtea, Feb 14 2020
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Prod(Z,Z,Z),Z),Sequence(Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 2 x - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 05 2014 *)
  • PARI
    Vec((1-x)/(1-2*x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011
    

Formula

Recurrence: a(0)=1, a(1)=1, a(2)=2; thereafter a(n) = 2*a(n-1)+a(n-3).
a(n) = Sum(1/59*(4+3*_alpha^2+17*_alpha)*_alpha^(-1-n), _alpha = RootOf(-1+2*_Z+_Z^3)).
a(n) = A008998(n) - A008998(n-1). - R. J. Mathar, Feb 04 2014
Let u1 = 2.20556943... denote the real root of x^3-2*x^2-1. There is an explicit constant c1 = 0.460719842... such that for n>0, a(n) = nearest integer to c1*u1^n. - N. J. A. Sloane, Nov 07 2016
a(2n) = a(n)^2 - a(n-1)^2 + (1/2)*(a(n+2) - a(n+1) - a(n))^2. - Greg Dresden and Michael Tulskikh, Aug 20 2019
a(n) = 2^(n-1) + Sum_{i=3..n}(2^(n-i)*a(i-3)). - Greg Dresden, Aug 27 2019
a(n+1) = (Sum_{i >= 0} 2^(n-3i-2)*(4*binomial(n-2i, i) + binomial(n-2i-2, i))). - Michael Tulskikh, Feb 14 2020
a(n) = A008998(n-1) + A008998(n-3). - Michael Tulskikh, Feb 14 2020

A008999 a(n) = 2*a(n-1) + a(n-4).

Original entry on oeis.org

1, 2, 4, 8, 17, 36, 76, 160, 337, 710, 1496, 3152, 6641, 13992, 29480, 62112, 130865, 275722, 580924, 1223960, 2578785, 5433292, 11447508, 24118976, 50816737, 107066766, 225581040, 475281056, 1001378849
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008998.

Programs

  • GAP
    a:=[1,2,4,8];; for n in [5..40] do a[n]:=2*a[n-1]+a[n-4]; od; a; # G. C. Greubel, Jun 12 2019
  • Magma
    I:=[1, 2, 4, 8]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, May 09 2012
    
  • Maple
    A008999 := proc(n) option remember; if n <= 3 then 2^n else 2*A008999(n-1)+A008999(n-4); fi; end;
  • Mathematica
    LinearRecurrence[{2,0,0,1},{1,2,4,8},40] (* Harvey P. Dale, May 09 2012 *)
    CoefficientList[Series[1/(1-2x-x^4),{x,0,40}],x] (* Vincenzo Librandi, May 09 2012 *)
  • Maxima
    a(n):=sum(sum(binomial(n-m+(-3)*j,j)*binomial(n-3*j,m),j,0,(n-m)/3),m,0,n); /* Vladimir Kruchinin, May 23 2011 */
    
  • PARI
    my(x='x+O('x^40)); Vec(1/(1-2*x-x^4)) \\ G. C. Greubel, Jun 12 2019
    
  • Sage
    (1/(1-2*x-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 12 2019
    

Formula

G.f.: 1/(1-2*x-x^4). - Philippe Deléham, Dec 02 2006
a(n) = Sum_{m=0..n} Sum_{j=0..(n-m)/3} binomial(n-m+(-3)*j,j)*binomial(n-3*j,m). - Vladimir Kruchinin, May 23 2011
O.g.f.: exp( Sum {n>=1} ( (1 + sqrt(1 + x^2))^n + (1 - sqrt(1 + x^2))^n ) * x^n/n ). Cf. A008998. - Peter Bala, Dec 22 2014

A193641 Number of arrays of -1..1 integers x(1..n) with every x(i) in a subsequence of length 1 or 2 with sum zero.

Original entry on oeis.org

1, 3, 7, 15, 33, 73, 161, 355, 783, 1727, 3809, 8401, 18529, 40867, 90135, 198799, 438465, 967065, 2132929, 4704323, 10375711, 22884351, 50473025, 111321761, 245527873, 541528771, 1194379303, 2634286479, 5810101729, 12814582761
Offset: 1

Views

Author

R. H. Hardin, Aug 02 2011

Keywords

Comments

Column 1 of A193648.
Or yet empirical: row sums of triangle
m/k | 0 1 2 3 4 5 6 7
==================================================
0 | 1
1 | 1 2
2 | 1 2 4
3 | 1 2 4 8
4 | 1 4 4 8 16
5 | 1 4 12 8 16 32
6 | 1 4 12 32 16 32 64
7 | 1 6 12 32 80 32 64 128
which is triangle for numbers 2^k*C(m,k) with triplicated diagonals. - Vladimir Shevelev, Apr 13 2012

Examples

			Some solutions for n=6:
   1   1   1   0   0   1  -1   1   0  -1  -1   0   0   0  -1  -1
  -1  -1  -1   0  -1  -1   1  -1   1   1   1   1   1   0   1   1
  -1   0   1   0   1   1   0   0  -1  -1   0  -1  -1   1  -1   1
   1   1   1   0   1   0  -1  -1   1   1   0   0  -1  -1  -1  -1
   0  -1  -1  -1  -1   0   1   1  -1   0   0   0   1   1   1   1
   0   1   1   1   1   0  -1   0   0   0   0   0   0  -1  -1  -1
		

Programs

  • Haskell
    a193641 n = a193641_list !! n
    a193641_list = drop 2 xs where
       xs = 1 : 1 : 1 : zipWith (+) xs (map (* 2) $ drop 2 xs)
    -- Reinhard Zumkeller, Jan 01 2014

Formula

Empirical: a(n) = 2*a(n-1) + a(n-3).
Empirical: G.f.: -x*(1+x+x^2) / ( -1+2*x+x^3 ); a(n) = A008998(n-3) + A008998(n-2) + A008998(n-1). - R. J. Mathar, Feb 19 2015
Empirical: a(n) = 1 + 2*A077852(n-2) for n >= 2. - Greg Dresden, Apr 04 2021
Empirical: partial sums of A052910. - Sean A. Irvine, Jul 14 2022

A077852 Expansion of (1-x)^(-1)/(1-2*x-x^3).

Original entry on oeis.org

1, 3, 7, 16, 36, 80, 177, 391, 863, 1904, 4200, 9264, 20433, 45067, 99399, 219232, 483532, 1066464, 2352161, 5187855, 11442175, 25236512, 55660880, 122763936, 270764385, 597189651, 1317143239, 2905050864, 6407291380, 14131726000, 31168502865, 68744297111
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A019489. - R. J. Mathar, Sep 19 2008

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|1|-2|3>>^n)[4,4]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 12 2017
  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,-2,1,-1},{1,3,7,16},40] (* Harvey P. Dale, Oct 05 2012 *)

Formula

From R. J. Mathar, May 15 2008: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4).
a(n+1) - a(n) = A008998(n+1). (End)
a(n) = 2*a(n-1) + a(n-3) + 1. - Greg Dresden, Apr 04 2021

A117716 Triangle T(n,k) read by rows: the coefficient [x^n] of x^2/(1-(k+1)*x-x^3) in row n, columns 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 1, 4, 9, 16, 25, 2, 9, 28, 65, 126, 217, 3, 20, 87, 264, 635, 1308, 2415, 4, 44, 270, 1072, 3200, 7884, 16954, 32960, 6, 97, 838, 4353, 16126, 47521, 119022, 264193, 534358, 9, 214, 2601, 17676, 81265, 286434, 835569, 2117656, 4815801, 10050030
Offset: 0

Views

Author

Roger L. Bagula, Apr 13 2006, corrected Apr 15 2006

Keywords

Examples

			Triangle begins as:
  0;
  0,  0;
  1,  1,   1;
  1,  2,   3,    4;
  1,  4,   9,   16,   25;
  2,  9,  28,   65,  126,  217;
  3, 20,  87,  264,  635, 1308,  2415;
  4, 44, 270, 1072, 3200, 7884, 16954, 32960;
		

Crossrefs

Cf. A000930 (column 0), A008998 (column 1), A052541 (column 2), A052927 (column 3), A001093 (row 5), A185065 (row 6), A117715, A117724.

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A117716:= func< n,k | Coefficient(R!( x^2/(1-(k+1)*x-x^3) ), n) >;
    [[A117716(n,k): k in [0..n]]: n in [0..m]]; // G. C. Greubel, Jul 23 2023
    
  • Maple
    A117716 := proc(n,m)
            x^2/(1-(m+1)*x-x^3) ;
            if n < 0 then
                    0;
            else
                    coeftayl(%,x=0,n) ;
            end if;
    end proc: # R. J. Mathar, May 14 2013
  • Mathematica
    T[n_, k_]:= T[n, k]= Coefficient[Series[x^2/(1-(k+1)*x-x^3), {x,0,n+ 2}], x, n];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A117716(n,k):
        P. = PowerSeriesRing(QQ)
        return P( x^2/(1-(k+1)*x-x^3) ).list()[n]
    flatten([[A117716(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 23 2023

Extensions

Edited by G. C. Greubel, Jul 23 2023

A052910 Expansion of 1 + 2/(1-2*x-x^3).

Original entry on oeis.org

1, 2, 4, 8, 18, 40, 88, 194, 428, 944, 2082, 4592, 10128, 22338, 49268, 108664, 239666, 528600, 1165864, 2571394, 5671388, 12508640, 27588674, 60848736, 134206112, 296000898, 652850532, 1439907176, 3175815250, 7004481032
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • GAP
    a:=[2,4,8];; for n in [4..30] do a[n]:=2*a[n-1]+a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Oct 15 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^3)/(1-2*x-x^3) )); // G. C. Greubel, Oct 15 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Sequence(Prod(Z,Z,Z)),Union(Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{1},LinearRecurrence[{2,0,1},{2,4,8},30]] (* Harvey P. Dale, Jun 07 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x^3)/(1-2*x-x^3)) \\ G. C. Greubel, Oct 15 2019
    
  • Sage
    def A052910_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x^3)/(1-2*x-x^3)).list()
    A052910_list(30) # G. C. Greubel, Oct 15 2019
    

Formula

G.f.: (1-x^3)/(1-2*x-x^3).
a(n) = 2*a(n-1) + a(n-3), with a(0)=1, a(1)=2, a(2)=4, a(3)=8.
a(n) = Sum_{alpha=RootOf(-1 + 2*z + z^3)} (2/59)*(12 -8*alpha + 9*alpha^2)*alpha^(-1-n).
a(n) = A008998(n) - A008998(n-3). - R. J. Mathar, Nov 28 2011

Extensions

More terms from James Sellers, Jun 05 2000

A077926 Expansion of (1-x)^(-1)/(1+2*x+x^3).

Original entry on oeis.org

1, -1, 3, -6, 14, -30, 67, -147, 325, -716, 1580, -3484, 7685, -16949, 37383, -82450, 181850, -401082, 884615, -1951079, 4303241, -9491096, 20933272, -46169784, 101830665, -224594601, 495358987, -1092548638, 2409691878, -5314742742, 11722034123, -25853760123, 57022262989, -125766560100
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Programs

Formula

a(n)=-a(n-1)+2*a(n-2)-a(n-3)+a(n-4). - N-E. Fahssi, Mar 29 2008
a(n) -a(n-1) = (-1)^n*A008998(n). - R. J. Mathar, Jun 08 2020

A020708 Pisot sequences E(4,9), P(4,9).

Original entry on oeis.org

4, 9, 20, 44, 97, 214, 472, 1041, 2296, 5064, 11169, 24634, 54332, 119833, 264300, 582932, 1285697, 2835694, 6254320, 13794337, 30424368, 67103056, 148000449, 326425266, 719953588, 1587907625, 3502240516, 7724434620, 17036776865, 37575794246, 82876023112
Offset: 0

Views

Author

Keywords

Crossrefs

This is a subsequence of A008998.
See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Exy:=[4,9]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2) + 1/2): n in [1..40]]; // Bruno Berselli, Feb 05 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 4, a[1] == 9, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1/2]}, a, {n, 0, 30}] (* Bruno Berselli, Feb 05 2016 *)
    LinearRecurrence[{2,0,1},{4,9,20},40] (* Harvey P. Dale, Dec 19 2022 *)
  • PARI
    Vec((4+x+2*x^2) / (1-2*x-x^3) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = 2*a(n-1) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (4+x+2*x^2) / (1-2*x-x^3). - Colin Barker, Jun 05 2016
Theorem: E(4,9) satisfies a(n) = 2 a(n - 1) + a(n - 3) for n >= 3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
Showing 1-10 of 25 results. Next