cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A097829 Partial sums of Chebyshev sequence S(n,15)= U(n,15/2)=A078364(n).

Original entry on oeis.org

1, 16, 240, 3585, 53536, 799456, 11938305, 178275120, 2662188496, 39754552321, 593656096320, 8865086892480, 132382647290881, 1976874622470736, 29520736689770160, 440834175724081665, 6582991899171454816
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Crossrefs

Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Formula

a(n) = sum(S(k, 15), k=0..n) with S(k, 15) = U(k, 15/2) = A078364(k) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1-15*x+x^2)) = 1/(1-16*x+16*x^2-x^3).
a(n) = 16*a(n-1)-16*a(n-2)+a(n-3) with n>=2, a(-1)=0, a(0)=1, a(1)=16.
a(n) = 15*a(n-1)-a(n-2)+1 with n>=1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 15) - S(n, 15) -1)/13.

A078366 A Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 17, 288, 4879, 82655, 1400256, 23721697, 401868593, 6808044384, 115334885935, 1953885016511, 33100710394752, 560758191694273, 9499788548407889, 160935647131239840, 2726406212682669391, 46187969968474139807, 782469083251377707328, 13255786445304946884769
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 285*a^2 = +4 with companion sequence b(n)=A078367(n+1), n >= 0.
This is the m=19 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..18 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364 and A077412. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 17's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,16}. - Milan Janjic, Jan 23 2015

Crossrefs

Cf. A077428, A078355 (Pell +4 equations). Cf. A078367.

Programs

  • GAP
    a:=[1,17,288];; for n in [4..20] do a[n]:=17*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
  • Magma
    I:=[1, 17, 288]; [n le 3 select I[n] else 17*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Mathematica
    CoefficientList[Series[1/(1 - 17 x + x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    LinearRecurrence[{17,-1},{1,17},20] (* Harvey P. Dale, Aug 02 2018 *)
  • PARI
    my(x='x+O('x^20)); Vec(1/(1-17*x+x^2)) \\ G. C. Greubel, May 25 2019
    
  • Sage
    [lucas_number1(n,17,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 17*a(n-1) - a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(19))/sqrt(19) = S(n, 17), where S(n, x) = U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (17+sqrt(285))/2 and am = (17-sqrt(285))/2.
G.f.: 1/(1-17*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*16^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = (1/15)*(15 + sqrt(285)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = (1/34)*(15 + sqrt(285)). - Peter Bala, Dec 23 2012
For n >= 1, a(n) = U(n-1,13/2), where U(k,x) represents Chebyshev polynomial of the second order. - Milan Janjic, Jan 23 2015
a(n) = sqrt((A078367(n+1)^2 - 4)/285), n>=0, (Pell equation d=285, +4).
E.g.f.: exp(17*x/2)*(sqrt(285)*cosh(sqrt(285)*x/2) + 17*sinh(sqrt(285)*x/2))/sqrt(285). - Stefano Spezia, Aug 19 2023

A078365 A Chebyshev T-sequence with Diophantine property.

Original entry on oeis.org

2, 15, 223, 3330, 49727, 742575, 11088898, 165590895, 2472774527, 36926027010, 551417630623, 8234338432335, 122963658854402, 1836220544383695, 27420344506901023, 409468947059131650
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation a^2 - 221*b^2 =+4 with companion sequence b(n)=A078364(n-1), n>=1.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 221*A078364(n-1)^2), n>=1, (Pell equation d=221, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 15; a[n_] := 15a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{15,-1},{2,15},20] (* Harvey P. Dale, Nov 09 2022 *)
  • Sage
    [lucas_number2(n,15,1) for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008

Formula

a(n)=15*a(n-1)-a(n-2), n >= 1; a(-1)=15, a(0)=2.
a(n) = S(n, 15) - S(n-2, 15) = 2*T(n, 15/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 15)=A078364(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-15*x)/(1-15*x+x^2).
a(n) = ap^n + am^n, with ap := (15+sqrt(221))/2 and am := (15-sqrt(221))/2.

A078368 A Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 357*a^2 =+4 with companion sequence b(n)=A078369(n+1), n>=0.
This is the m=21 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..20 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366 and A049660. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 19's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,18}. Milan Janjic, Jan 25 2015

Crossrefs

a(n) = sqrt((A078369(n+1)^2 - 4)/357), n>=0, (Pell equation d=357, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

Formula

a(n) = 19*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = (ap^(n+1)-am^(n+1))/(ap-am) with ap = (19+sqrt(357))/2 and am = (19-sqrt(357))/2.
a(n) = S(2*n+1, sqrt(21))/sqrt(21) = S(n, 19); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
G.f.: 1/(1-19*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*18^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/17*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/38*(17 + sqrt(357)). - Peter Bala, Dec 23 2012

A161591 The list of the B values in the common solutions to the 2 equations 13*k + 1 = A^2, 17*k + 1 = B^2.

Original entry on oeis.org

1, 16, 239, 3569, 53296, 795871, 11884769, 177475664, 2650250191, 39576277201, 590993907824, 8825332340159, 131788991194561, 1968009535578256, 29388354042479279, 438857301101610929, 6553471162481684656, 97863210136123658911, 1461394680879373199009
Offset: 1

Views

Author

Paul Weisenhorn, Jun 14 2009

Keywords

Comments

The 2 equations are equivalent to the Pell equation x^2 - 221*y^2 = 1, with x = (221*k+15)/2 and y = A*B/2, case C=13 in A160682.

Crossrefs

Cf. A160682 (sequence of A), A161584 (sequence of k).

Programs

  • Maple
    t:=0: for b from 1 to 1000000 do a:=sqrt((13*b^2+4)/17):
    if (trunc(a)=a) then t:=t+1: n:=(b^2-1)/17: print(t,a,b,n): end if: end do:
  • Mathematica
    LinearRecurrence[{15,-1},{1,16},30] (* Harvey P. Dale, Dec 04 2015 *)
  • Sage
    [(lucas_number2(n,15,1)-lucas_number2(n-1,15,1))/13 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009

Formula

B(t+2) = 15*B(t+1) - B(t).
B(t) = ((221+17*w)*((15+w)/2)^(t-1) + (221-17*w)*((15-w)/2)^(t-1))/442 where w=sqrt(221).
B(t) = floor of ((221+17*w)*((15+w)/2)^(t-1))/442 = A078364(t-2) + A078364(t-1).
G.f.: x*(1+x)/(1-15*x+x^2).

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009

A092499 Chebyshev polynomials S(n-1,21) with Diophantine property.

Original entry on oeis.org

0, 1, 21, 440, 9219, 193159, 4047120, 84796361, 1776676461, 37225409320, 779956919259, 16341869895119, 342399310878240, 7174043658547921, 150312517518628101, 3149388824232642200, 65986852791366858099
Offset: 0

Views

Author

Rainer Rosenthal, Apr 05 2004

Keywords

Comments

Sequence R_21: Starts with 0,1,21 and satisfies A*C=B^2-1 for successive A,B,C.
The natural numbers a(n)=n satisfy the recurrence a(n-1)*a(n+1)=a(n)^2-1. Let R_r denote the sequence starting with 0,1,r and with this recurrence. We see that R_2 = "the natural numbers" and we find R_3 = A001906. These R_r form a "family" of sequences, which coincides with the m-family (r=m-2, n -> n+1) provided by Wolfdieter Lang (see A078368). This sequence R_21 is strongly related to A041833, which gives the denominators in the continued fraction of sqrt(437).
All positive integer solutions of Pell equation b(n)^2 - 437*a(n)^2 = +4 together with b(n)=A097777(n), n>=0.
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 21's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,20}. - Milan Janjic, Jan 25 2015

Examples

			a(3)=440 because a(1)*440 = a(2)^2-1.
		

Crossrefs

Cf. R_3=A001906, R_4=A001353, R_5=A004254, R_6=A001109, R_7=A004187, R_8=A001090, R_9=A018913, R_10=A004189, R_11=A004190, R_12=A004191, R_13=A078362, R_14=A007655, R_15=A078364, R_16=A077412, R_17=A078366, R_18=A049660, R_19=A078368, R_20=A075843, R_21=this, sequence, R_22=A077421. See also A041219 and A041917.

Programs

  • Mathematica
    LinearRecurrence[{21,-1},{0,1},30] (* Harvey P. Dale, Apr 23 2015 *)
  • Sage
    [lucas_number1(n,21,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008

Formula

a(0)=0, a(1)=1, a(2)=21 and a(n-1)*a(n+1) = a(n)^2-1
a(n) = S(n-1, 21)=U(n-1, 21/2) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = S(2*n-1, sqrt(23))/sqrt(23), n>=1.
a(n) = 21*a(n-1)-a(n-2), n >= 1; a(0)=0, a(1)=1.
a(n) = (ap^n-am^n)/(ap-am) with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
G.f.: x/(1-21*x+x^2).
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*20^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/19*(19 + sqrt(437)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/42*(19 + sqrt(437)). - Peter Bala, Dec 23 2012

Extensions

Extension, Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
Corrected by T. D. Noe, Nov 07 2006

A098302 Member r=17 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 17, 256, 3825, 57121, 852992, 12737761, 190213425, 2840463616, 42416740817, 633410648641, 9458742988800, 141247734183361, 2109257269761617, 31497611312240896, 470354912413851825, 7023826074895536481
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Programs

  • Mathematica
    LinearRecurrence[{# - 1, -# + 1, 1}, {0, 1, #}, 18] &[17] (* Michael De Vlieger, Feb 23 2021 *)

Formula

a(n) = 2*(T(n, 15/2)-1)/13 with twice the Chebyshev polynomials of the first kind evaluated at x=15/2: 2*T(n, 15/2)=A078365(n)= ((15+sqrt(221))^n +(15-sqrt(221))^n)/2^n.
a(n) = 15*a(n-1) - a(n-2) + 2, n>=2, a(0)=0, a(1)=1.
a(n) = 16*a(n-1) - 16*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=17.
G.f.: x*(1+x)/((1-x)*(1-15*x+x^2)) = x*(1+x)/(1-16*x+16*x^2-x^3) (from the Stephan link, see A092184).
a(2*n+2) = 17*A078364(n)^2; a(2*n+1) = A161591(n+1)^2. - Klaus Purath, Aug 13 2025
Showing 1-7 of 7 results.