cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A078400 Iterated sum-of-digits of A078403(n).

Original entry on oeis.org

2, 3, 5, 7, 2, 5, 2, 5, 7, 2, 5, 7, 7, 2, 7, 2, 5, 5, 2, 5, 7, 5, 2, 2, 7, 2, 5, 7, 5, 2, 7, 2, 5, 5, 7, 2, 7, 5, 7, 2, 7, 5, 2, 5, 5, 7, 7, 2, 7, 2, 2, 5, 5, 7, 5, 2, 2, 5, 7, 5, 7, 2, 5, 2, 7, 2, 7, 7, 7, 5, 5, 5, 2, 2, 7, 2, 5, 7, 2, 2, 5, 2, 5, 2, 7, 5, 2, 5, 7, 5, 7, 7, 7, 2, 5, 2, 7, 2, 2, 5, 7, 2, 5, 7, 7
Offset: 1

Views

Author

Cino Hilliard, Dec 24 2002

Keywords

Crossrefs

Programs

  • PARI
    drp(n) = { forprime(x=2,n, r = x%9; if(isprime(r), print1(r" "); ); ); }

Extensions

More terms from Joshua Zucker, Jul 24 2006

A167134 Primes congruent to {2, 3, 5, 7} mod 11.

Original entry on oeis.org

2, 3, 5, 7, 13, 29, 47, 71, 73, 79, 101, 113, 137, 139, 157, 167, 179, 181, 211, 223, 227, 233, 269, 271, 277, 293, 311, 313, 337, 359, 379, 401, 409, 421, 431, 443, 467, 487, 491, 509, 541, 557, 563, 577, 599, 601, 607, 619, 641, 643, 673, 709, 733, 739, 751
Offset: 1

Views

Author

Klaus Brockhaus, Oct 28 2009

Keywords

Comments

Primes p such that p mod 11 is prime.
Primes of the form 11*n+r where n >= 0 and r is in {2, 3, 5, 7}.
2 and primes congruent to {3, 5, 7, 13} mod 22. - Chai Wah Wu, Apr 29 2025

Crossrefs

Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135, A167119: primes p such that p mod k is prime, for k = 3..13 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(760) | p mod 11 in {2, 3, 5, 7} ];
    [ p: p in PrimesUpTo(760) | exists(t){ n: n in [0..p div 11] | exists(u){ r: r in {2, 3, 5,7} | p eq (11*n+r) } } ];
  • Mathematica
    Select[Prime[Range[600]],MemberQ[{2, 3, 5, 7},Mod[#,11]]&] (* Vincenzo Librandi, Aug 05 2012 *)

A167135 Primes congruent to {2, 3, 5, 7, 11} mod 12.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 191, 197, 199, 211, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 317, 331, 347, 353, 359
Offset: 1

Views

Author

Klaus Brockhaus, Oct 28 2009

Keywords

Comments

Primes p such that p mod 12 is prime.
Primes of the form 12*n+r where n >= 0 and r is in {2, 3, 5, 7, 11}.
Except for the prime 2, these are the primes that are encountered in the set of numbers {x, f(f(x))} where x is of the form 4k+3 with k>=0, and where f(x) is the 3x+1-problem function, and f(f(x)) the second iteration value. Indeed this sequence is the set union of 2 and A002145 (4k+3 primes) and A007528 (6k+5 primes), since f(f(4k+3))=6k+5. Equivalently one does not get any prime from A068228 (the complement of the present sequence). - Michel Marcus and Bill McEachen, May 07 2016

Crossrefs

Subsequences: A002145, A007528. Complement: A068228.
Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135, A167119: primes p such that p mod k is prime, for k = 3..13 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(760) | p mod 12 in {2, 3, 5, 7, 11} ];
    
  • Magma
    [ p: p in PrimesUpTo(760) | exists(t){ n: n in [0..p div 12] | exists(u){ r: r in {2, 3, 5,7, 11} | p eq (12*n+r) } } ];
  • Maple
    isA167135  := n -> isprime(n) and not modp(n, 12) != 1:
    select(isA167135, [$1..360]); # Peter Luschny, Mar 28 2018
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{2,3, 5, 7, 11},Mod[#,12]]&] (* Vincenzo Librandi, Aug 05 2012 *)
    Select[Prime[Range[72]], Mod[#, 12] != 1 &] (* Peter Luschny, Mar 28 2018 *)

A167119 Primes congruent to 2, 3, 5, 7 or 11 (mod 13).

Original entry on oeis.org

2, 3, 5, 7, 11, 29, 31, 37, 41, 59, 67, 83, 89, 107, 109, 137, 163, 167, 193, 197, 211, 223, 239, 241, 263, 271, 293, 317, 349, 353, 367, 379, 397, 401, 419, 421, 431, 449, 457, 479, 499, 509, 523, 557, 577, 587, 601, 613, 631, 653, 661, 683, 691, 709, 733, 739, 743, 757
Offset: 1

Views

Author

Keywords

Comments

Primes which have a remainder mod 13 that is prime.
Union of A141858, A100202, A102732, A140371 and A140373. - R. J. Mathar, Oct 29 2009

Examples

			11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.
		

Crossrefs

Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135: primes p such that p mod k is prime, for k = 3..12 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // Klaus Brockhaus, Oct 28 2009
  • Mathematica
    f[n_]:=PrimeQ[Mod[n,13]]; lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,6,6!}];lst
    Select[Prime[Range[4000]],MemberQ[{2, 3, 5, 7, 11},Mod[#,13]]&] (* Vincenzo Librandi, Aug 05 2012 *)
  • PARI
    {forprime(p=2, 740, if(isprime(p%13), print1(p, ",")))} \\ Klaus Brockhaus, Oct 28 2009
    

Extensions

Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009 and Oct 29 2009

A079130 Primes such that iterated sum-of-digits (A038194) is a square.

Original entry on oeis.org

13, 19, 31, 37, 67, 73, 103, 109, 127, 139, 157, 163, 181, 193, 199, 211, 229, 271, 283, 307, 337, 373, 379, 397, 409, 433, 463, 487, 499, 523, 541, 571, 577, 607, 613, 631, 643, 661, 733, 739, 751, 757, 769, 787, 811, 823, 829, 859, 877, 883, 919, 937, 967
Offset: 1

Views

Author

Klaus Brockhaus, Dec 28 2002

Keywords

Comments

Primes which are 1 or 4 mod 9. - Charles R Greathouse IV, Sep 04 2014

Crossrefs

Programs

  • Maple
    select(isprime,map(t -> (9*t+1,9*t+4),[$1..1000]));  # Robert Israel, Sep 04 2014
  • Mathematica
    sQ[n_]:=MemberQ[{1,4,9},NestWhile[Total[IntegerDigits[#]]&,n,#>9&]]; Select[Prime[Range[300]],sQ] (* Harvey P. Dale, Dec 06 2012 *)
  • PARI
    forprime(p=2,1000,if(issquare(p%9),print1(p,",")))

Formula

a(n) ~ 3n log n. - Charles R Greathouse IV, Sep 04 2014

A079131 Primes such that iterated sum-of-digits (A038194) is odd.

Original entry on oeis.org

3, 5, 7, 19, 23, 37, 41, 43, 59, 61, 73, 79, 97, 109, 113, 127, 131, 149, 151, 163, 167, 181, 199, 223, 239, 241, 257, 271, 277, 293, 307, 311, 313, 331, 347, 349, 367, 379, 383, 397, 401, 419, 421, 433, 439, 457, 487, 491, 509, 523, 541, 547, 563, 577, 599
Offset: 1

Views

Author

Klaus Brockhaus, Dec 28 2002

Keywords

Comments

Subsequence of primes of A187318. - Michel Marcus, Jun 08 2015
Primes congruent to 1, 3, 5, 7 mod 18. - Robert Israel, Jun 08 2015

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(600) | p mod 18 in [1,3,5,7]]; // Vincenzo Librandi, Jun 07 2015
    
  • Magma
    [a: n in [0..1000] | IsPrime(a) where a is Floor(9*n/5)]; // Vincenzo Librandi, Jun 08 2015
  • Maple
    select(isprime, [3, seq(seq(i*18+j, j=[1,5,7]),i=0..100)]); # Robert Israel, Jun 08 2015
  • Mathematica
    Select[Prime[Range[120]], OddQ[Mod[#, 9]] &] (* Bruno Berselli, Aug 31 2012 *)
  • PARI
    forprime(p=2,600,if((p%9)%2==1,print1(p,",")))
    

A079132 Primes such that iterated sum-of-digits (A038194) is even.

Original entry on oeis.org

2, 11, 13, 17, 29, 31, 47, 53, 67, 71, 83, 89, 101, 103, 107, 137, 139, 157, 173, 179, 191, 193, 197, 211, 227, 229, 233, 251, 263, 269, 281, 283, 317, 337, 353, 359, 373, 389, 409, 431, 443, 449, 461, 463, 467, 479, 499, 503, 521, 557, 569, 571, 587, 593, 607
Offset: 1

Views

Author

Klaus Brockhaus, Dec 28 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[120]], EvenQ[Mod[#, 9]] &] (* Bruno Berselli, Aug 31 2012 *)
  • PARI
    forprime(p=2,600,if((p%9)%2==0,print1(p,",")))

A157868 Palindromic primes with prime digital roots.

Original entry on oeis.org

2, 3, 5, 7, 11, 101, 131, 151, 191, 313, 353, 383, 727, 797, 929, 10301, 10501, 11311, 12821, 13331, 13831, 15451, 16061, 16661, 17471, 17971, 19391, 19991, 30103, 30803, 32423, 35053, 35753, 36263, 36563, 37573, 38183, 38783, 70207, 70607
Offset: 1

Views

Author

Lekraj Beedassy, Mar 08 2009

Keywords

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Mar 12 2009

A079155 The number of primes less than 10^n whose digital root (A038194) is also prime.

Original entry on oeis.org

4, 15, 85, 619, 4800, 39266, 332276, 2880818, 25423985, 227527467
Offset: 1

Views

Author

Robert G. Wilson v, Dec 27 2002

Keywords

Examples

			a(2) = 15 because the only primes less than 100 whose have digital roots are also prime are {2,3,5,7,11,23,29,41,43,47,59,61,79,83,97}.
		

Crossrefs

The primes are in A078403, their digital roots are in A078400.

Programs

  • Mathematica
    c = 0; k = 1; Do[ While[ k < 10^n, If[ PrimeQ[k] && PrimeQ[ Mod[k, 9]], c++ ]; k++ ]; Print[c], {n, 1, 8}]
  • Python
    # use primerange (slower) vs. sieve.primerange (>> memory) for larger terms
    from sympy import isprime, sieve
    def afind(terms):
      s = 0
      for n in range(1, terms+1):
        s += sum(isprime(p%9) for p in sieve.primerange(10**(n-1), 10**n))
        print(s, end=", ")
    afind(7) # Michael S. Branicky, Apr 15 2021

Extensions

a(9)-a(10) from Michael S. Branicky, Apr 15 2021

A277995 Primes with prime subscripts whose digits are primes, whose digital root is prime, whose sum of digits is prime and whose reversal is also prime.

Original entry on oeis.org

3, 5, 353, 32732237, 35225327, 75527537, 75535277, 75557723, 75737723, 75755257, 77322233, 77752733, 322375577, 322775737, 325725577, 325773727, 337735553, 352272233, 355322777, 357333377, 357735773, 372577727, 372753727, 375577733, 375722377, 375727237, 377725723, 377752723
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 08 2016

Keywords

Comments

Intersection of A006450, A007500, A019546, A028834 and A078403.

Examples

			32732237 is in the sequence because 32732237 is the 2016197-th prime number, 2016197 is prime, digits 2, 3 and 7 are primes, 32732237 -> 3 + 2 + 7 + 3 + 2 + 2 + 3 + 7 = 29 (is prime) -> 2 + 9 = 11 -> 1 + 1 = 2, 2 is prime and 73223723 is also prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[Prime[n]], {n, 1500000}], Complement[IntegerDigits[#1], {2, 3, 5, 7}] == {} && PrimeQ[#1 - 9 Floor[(#1 - 1)/9]] && PrimeQ[Total[IntegerDigits[#1]]] && PrimeQ[FromDigits[Reverse[IntegerDigits[#1]]]] & ]
Showing 1-10 of 10 results.