cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A005385 Safe primes p: (p-1)/2 is also prime.

Original entry on oeis.org

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2879, 2903, 2963
Offset: 1

Views

Author

Keywords

Comments

Then (p-1)/2 is called a Sophie Germain prime: see A005384.
Or, primes of the form 2p+1 where p is prime.
Primes p such that denominator(Bernoulli(p-1) + 1/p) = 6. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 10 2004
Primes p such that p-1 is a semiprime. - Zak Seidov, Jul 01 2005
A156659(a(n)) = 1; A156875 gives numbers of safe primes <= n. - Reinhard Zumkeller, Feb 18 2009
From Daniel Forgues, Jul 31 2009: (Start)
A safe prime p is 7 or of the form 6k-1, k >= 1, i.e., p == 5 (mod 6).
A prime p of the form 6k+1, k >= 2, i.e., p = 1 (mod 6), cannot be a safe prime since (p-1)/2 is composite and divisible by 3. (End)
If k is the product of the n-th safe prime p and its corresponding Sophie Germain prime (p-1)/2, then a(n) = 2(k-phi(k))/3 + 1, where phi is Euler's totient function. - Wesley Ivan Hurt, Oct 03 2013
From Bob Selcoe, Apr 14 2014: (Start)
When the n-th prime is divided by all primes up to the (n-1)-th prime, safe primes (p) have remainders of 1 when divided by 2 and (p-1)/2 and no other primes. That is, p(mod j)=1 iff j={2,(p-1)/2}; p>j, {p,j}=>prime. Explanation: Generally, x(mod y)=1 iff x=y'+1, where y' is the set of divisors of y, y'>1. Since safe primes (p) are of the form p(mod j)=1 iff p and j are prime, then j={j'}. That is, since j is prime, there are no divisors of j (greater than 1) other than j. Therefore, no primes other than j exist which satisfy the equation p(mod j)=1.
Except primes of the form 2^n+1 (n>=0), all non-safe primes (p') will have at least one prime (p") greater than 2 and less than (p-1)/2 such that p'(mod p")=1. Explanation: Non-safe primes (p') are of the form p'(mod k)=1 where k is composite. This means prime divisors of k exist, and p" is the set of prime divisors of k (example p'=89: k=44; p"={2,11}). The exception applies because p"={2} iff p'=2^n+1.
Refer to the rows in triangle A207409 for illustration and further explanation. (End)
Conjecture: there is a strengthening of the Bertrand postulate for n >= 24: the interval (n, 2*n) contains a safe prime. It has been tested by Peter J. C. Moses up to n = 10^7. - Vladimir Shevelev, Jul 06 2015
The six known safe primes p such that (p-1)/2 is a Fibonacci prime are in A263880. - Jonathan Sondow, Nov 04 2015
The only term in common with A005383 is 5. - Zak Seidov, Dec 31 2015
From the fourth entry onward, do these correspond to Smarandache's problem 34 (see A007931 link), specifically values which cannot be used (do not meet conditions) to confirm the conjecture? - Bill McEachen, Sep 29 2016
Primes p with the property that there is a prime q such that p+q^2 is a square. - Zak Seidov, Feb 16 2017
It is conjectured that there are infinitely many safe primes, and their estimated asymptotic density ~ 2C/(log n)^2 (where C = 0.66... is the twin prime constant A005597) converges to the actual value as far as we know. - M. F. Hasler, Jun 14 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Except for the initial term, this is identical to A079148.
Subsequence of A088707.
Primes in A072055.

Programs

  • Haskell
    a005385 n = a005385_list !! (n-1)
    a005385_list = filter ((== 1) . a010051 . (`div` 2)) a000040_list
    -- Reinhard Zumkeller, Sep 18 2011
    
  • Magma
    [p: p in PrimesUpTo(3000) | IsPrime((p-1) div 2)]; // Vincenzo Librandi, Jul 06 2015
    
  • Maple
    with(numtheory); [ seq(safeprime(i),i=1..3000) ]: convert(%,set); convert(%,list); sort(%);
    A005385_list := n->select(i->isprime(iquo(i,2)),select(i->isprime(i),[$1..n])): # Peter Luschny, Nov 08 2010
  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[(#-1)/2]&] (* Zak Seidov, Jan 26 2011 *)
  • PARI
    g(n) = forprime(x=2,n,y=x+x+1;if(isprime(y),print1(y","))) \\ Cino Hilliard, Sep 12 2004
    
  • PARI
    [x|x<-primes(10^3), bigomega(x-1)==2] \\ Altug Alkan, Nov 04 2015
    
  • Python
    from sympy import isprime, primerange
    def aupto(limit):
      alst = []
      for p in primerange(1, limit+1):
        if isprime((p-1)//2): alst.append(p)
      return alst
    print(aupto(2963)) # Michael S. Branicky, May 07 2021

Formula

a(n) = 2 * A005384(n) + 1.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 15 2001

A109287 4-almost primes equal to p*q + 1, where p and q are (not necessarily distinct) primes.

Original entry on oeis.org

16, 36, 40, 56, 88, 135, 156, 184, 204, 210, 220, 248, 250, 260, 296, 306, 315, 328, 330, 340, 342, 372, 414, 459, 472, 490, 516, 536, 546, 580, 584, 636, 650, 686, 690, 708, 714, 732, 735, 738, 804, 808, 819, 836, 850, 852, 870, 872, 940, 950, 966, 975, 996
Offset: 1

Views

Author

Keywords

Comments

4-almost primes of the form semiprime + 1.

Examples

			a(1) = 16 because (3*5+1)=(2^4) = 16.
a(2) = 36 because (5*7+1)=((2^2)*(3^2)) = 36.
a(3) = 40 because (3*13+1)=((2^3)*5) = 40.
a(4) = 56 because (5*11+1)=((2^3)*7) = 56.
a(5) = 88 because (3*29+1)=((2^3)*11) = 88.
a(6) = 135 because (2*67+1)=((3^3)*5) = 135.
a(7) = 156 because (5*31+1)=((2^2)*3*13) = 156.
a(8) = 184 because (3*61+1)=((2^3)*23) = 184.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358. 4-almost primes are in A014613.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in A109373.
3-almost primes of the form semiprime + 1 are in A109067.
4-almost primes of the form semiprime + 1 are in this sequence.
5-almost primes of the form semiprime + 1 are in A109383.
Least n-almost prime of the form semiprime + 1 are in A128665.
Similar to A076153; after A076153(0)=3 next difference is A076153(100)=1792 whereas A109287(100)=1794.

Programs

  • Mathematica
    bo[n_] := Plus @@ Last /@ FactorInteger[n]; Select[Range[1000], bo[ # ] == 4 && bo[ # - 1] == 2 &] (* Ray Chandler, Aug 27 2005 *)
  • PARI
    is(n)=bigomega(n)==4 && bigomega(n-1)==2 \\ Charles R Greathouse IV, Sep 16 2015

Formula

a(n) is in this sequence iff a(n) is in A014613 and (a(n)-1) is in A001358.

Extensions

Extended by Ray Chandler, Aug 27 2005
Edited by Ray Chandler, Mar 20 2007

A109373 Semiprimes of the form semiprime + 1.

Original entry on oeis.org

10, 15, 22, 26, 34, 35, 39, 58, 86, 87, 94, 95, 119, 122, 123, 134, 142, 143, 146, 159, 178, 202, 203, 206, 214, 215, 218, 219, 254, 299, 302, 303, 327, 335, 362, 382, 394, 395, 446, 447, 454, 482, 502, 515, 527, 538, 543, 554, 566, 623, 634, 635, 695, 698
Offset: 1

Views

Author

Jonathan Vos Post, Aug 24 2005

Keywords

Examples

			a(1) = 10 because (3*3+1)=(2*5) = 10.
a(2) = 15 because (2*7+1)=(3*5) = 15.
a(3) = 22 because (3*7+1)=(2*11) = 22.
a(4) = 26 because (5*5+1)=(2*13) = 26.
a(5) = 34 because (3*11+1)=(2*17) = 34.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in this sequence.
3-almost primes of the form semiprime + 1 are in A109067.
4-almost primes of the form semiprime + 1 are in A109287.
5-almost primes of the form semiprime + 1 are in A109383.
Least n-almost prime of the form semiprime + 1 are in A128665.
Subsequence of A088707; A064911.

Programs

  • Haskell
    a109373 n = a109373_list !! (n-1)
    a109373_list = filter ((== 1) . a064911) a088707_list
    -- Reinhard Zumkeller, Feb 20 2012
    
  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range[ 700], fQ[ # - 1] && fQ[ # ] &] (* Robert G. Wilson v *)
    With[{sps=Select[Range[700],PrimeOmega[#]==2&]},Transpose[Select[ Partition[ sps,2,1],#[[2]]-#[[1]]==1&]][[2]]] (* Harvey P. Dale, Sep 05 2012 *)
  • PARI
    is(n)=bigomega(n)==2 && bigomega(n-1)==2 \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(n) is in this sequence iff a(n) is in A001358 and (a(n)-1) is in A001358.
a(n) = A070552(n) + 1.

Extensions

Extended by Ray Chandler and Robert G. Wilson v, Aug 25 2005
Edited by Ray Chandler, Mar 20 2007

A079149 Primes p such that either p-1 or p+1 has at most 2 prime factors, counted with multiplicity; i.e., primes p such that either bigomega(p-1) <= 2 or bigomega(p+1) <= 2, where bigomega(n) = A001222(n).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 37, 47, 59, 61, 73, 83, 107, 157, 167, 179, 193, 227, 263, 277, 313, 347, 359, 383, 397, 421, 457, 467, 479, 503, 541, 563, 587, 613, 661, 673, 719, 733, 757, 839, 863, 877, 887, 983, 997, 1019, 1093, 1153, 1187, 1201, 1213, 1237
Offset: 1

Views

Author

Cino Hilliard, Dec 27 2002

Keywords

Comments

There are only 2 primes such that both p-1 and p+1 have at most 2 prime factors - 3 and 5. Proof: If p > 5 then whichever of p-1 and p+1 is divisible by 4 has at least 3 prime factors.
Primes which are not the sum of two consecutive composite numbers. - Juri-Stepan Gerasimov, Nov 15 2009

Crossrefs

Union of A079147 and A079148. Cf. A060254, A079152.

Programs

  • Mathematica
    Select[Prime[Range[500]],MemberQ[PrimeOmega[{#-1,#+1}],2]&] (* Harvey P. Dale, Sep 04 2011 *)
  • PARI
    s(n) = {sr=0; ct=0; forprime(x=2,n, if(bigomega(x-1) < 3 || bigomega(x+1) < 3, print1(x" "); sr+=1.0/x; ct+=1; ); ); print(); print(ct" "sr); } \\ Lists primes p<=n such that p+-1 has at most 2 prime factors.

A079151 Primes p such that p-1 has at most 3 prime factors, counted with multiplicity; i.e., primes p such that bigomega(p-1) = A001222(p-1) <= 3.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 59, 67, 71, 79, 83, 103, 107, 131, 139, 149, 167, 173, 179, 191, 223, 227, 239, 263, 269, 283, 293, 311, 317, 347, 359, 367, 383, 389, 419, 431, 439, 443, 467, 479, 499, 503, 509, 557, 563, 587, 599, 607, 619, 643
Offset: 1

Views

Author

Cino Hilliard, Dec 27 2002

Keywords

Comments

Can it be proved that this is a subsequence of A301590, except for a(5) = 13? (Checked up to A301591(10^4) = 427421.) - M. F. Hasler, Aug 14 2021

Examples

			149 is in the sequence because 149 - 1 = 2*2*37 has 3 prime factors.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Reap[sr = 0; ct = 0; For[x = 2, x <= n, x = NextPrime[x], If[PrimeOmega[x - 1] < 4, Sow[x]; sr += 1.0/x; ct += 1]]][[2, 1]]; s[700] (* Jean-François Alcover, Jun 08 2013, translated and adapted from Pari *)
    Select[Prime[Range[120]],PrimeOmega[#-1]<4&] (* Harvey P. Dale, Oct 02 2017 *)
  • PARI
    s(n)=sr=0; ct=0; forprime(x=2,n, if(bigomega(x-1) < 4, print1(x" "); sr+=1.0/x; ct+=1; ); ); print(); print(ct" "sr); \\ Lists primes p<=n such that p-1 has at most 3 prime factors.
    
  • PARI
    list(lim)=my(v=List([2,3]),t); forprime(p=2,(lim-1)\2, if(isprime(t=2*p+1), listput(v,t))); forprime(p=2,(lim-1)\4, forprime(q=2,min(p,(lim-1)\2\p), if(isprime(t=2*p*q+1), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Mar 06 2017

Extensions

Typos in definition corrected by Harvey P. Dale, Oct 02 2017

A109067 3-almost primes of the form semiprime + 1.

Original entry on oeis.org

27, 50, 52, 63, 66, 70, 75, 78, 92, 116, 124, 130, 147, 170, 186, 188, 195, 207, 222, 236, 238, 255, 266, 268, 275, 279, 290, 292, 310, 322, 356, 363, 366, 387, 399, 404, 412, 418, 423, 428, 438, 452, 455, 470, 474, 483, 494, 498, 506, 518, 530, 534, 539, 555
Offset: 1

Views

Author

Jonathan Vos Post, Aug 24 2005

Keywords

Examples

			a(1) = 27 because (2*13+1)=(3^3) = 27.
a(2) = 50 because (7*7+1)=(2*5^2) = 50.
a(3) = 52 because (3*17+1)=(2^2*13) = 52.
a(4) = 63 because (2*31+1)=(3^2*7) = 63.
a(5) = 66 because (5*13+1)=(2*3*11) = 66.
a(6) = 70 because (3*23+1)=(2*5*7) = 70.
a(7) = 75 because (2*37+1)=(3*5^2) = 75.
a(8) = 78 because (7*11+1)=(2*3*13) = 78.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358. 3-almost primes are in A014612.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in A109373.
3-almost primes of the form semiprime + 1 are in this sequence.
4-almost primes of the form semiprime + 1 are in A109287.
5-almost primes of the form semiprime + 1 are in A109383.
Least n-almost prime of the form semiprime + 1 are in A128665.

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger[n];Select[Range[600], f[ # ] == 3 && f[ # - 1] == 2 &] (* Ray Chandler, Mar 20 2007 *)
    Select[Select[Range[600],PrimeOmega[#]==2&]+1,PrimeOmega[#]==3&] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=2,lim, forprime(q=2,min(p,lim\p), if(bigomega(t=p*q+1)==3, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff a(n) is in A014612 and a(n)-1 is in A001358.

Extensions

Edited and extended by Ray Chandler, Mar 20 2007

A079147 Primes p such that p+1 has at most 2 prime factors, counted with multiplicity; i.e., primes p such that bigomega(p+1) = A001222(p+1) <= 2.

Original entry on oeis.org

2, 3, 5, 13, 37, 61, 73, 157, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061, 3217, 3253
Offset: 1

Views

Author

Cino Hilliard, Dec 27 2002

Keywords

Comments

Sum of reciprocals ~ 1.266

Examples

			157 is in the sequence because 157 + 1 = 2*79 has 2 prime factors.
		

Crossrefs

Except for 2, this is identical to A005383. Cf. A079148, A079149, A079150.

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeOmega[#+1]<3&] (* Harvey P. Dale, May 17 2018 *)
  • PARI
    s(n) = {sr=0; forprime(x=2,n, if(bigomega(x+1) < 3, print1(x" "); sr+=1.0/x; ); ); print(); print(sr); } \\ Lists primes p<=n such that p+1 has at most 2 prime factors.

A109383 5-almost primes of the form semiprime + 1.

Original entry on oeis.org

112, 120, 162, 300, 304, 378, 392, 396, 408, 520, 552, 567, 592, 612, 630, 656, 675, 680, 688, 696, 700, 750, 780, 918, 924, 944, 952, 980, 990, 1044, 1100, 1116, 1136, 1140, 1160, 1168, 1170, 1242, 1264, 1272, 1300, 1323, 1352, 1372, 1380, 1386, 1416, 1470
Offset: 1

Views

Author

Jonathan Vos Post, Aug 25 2005

Keywords

Examples

			a(1) = 112 because (3*37)+1 = (2^4) * 7 = 112.
a(2) = 120 because (7*17)+1 = (2^3) * 3 * 5 = 120.
a(3) = 162 because (7*23)+1 = 2 * (3^4) = 162.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358. 5-almost primes are in A014614.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in A109373.
3-almost primes of the form semiprime + 1 are in A109067.
4-almost primes of the form semiprime + 1 are in A109287.
5-almost primes of the form semiprime + 1 are in this sequence.
Least n-almost prime of the form semiprime + 1 are in A128665.

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger[n];Select[Range[1500], f[ # ] == 5 && f[ # - 1] == 2 &] (* Ray Chandler, Mar 20 2007 *)
  • PARI
    v=vector(10000);i=0; for(n=1,9e99, if(issemi(n)&bigomega(n+1)==5, v[i++]=n+1;if(i==#v, return))); v \\ Charles R Greathouse IV, Feb 14 2011

Formula

a(n) is in this sequence iff a(n) is in A014614 and (a(n)-1) is in A001358.

Extensions

Extended by Ray Chandler, Mar 20 2007

A194593 Semiprimes s such that phi(s)/2 is prime.

Original entry on oeis.org

9, 10, 14, 22, 46, 94, 118, 166, 214, 334, 358, 454, 526, 694, 718, 766, 934, 958, 1006, 1126, 1174, 1438, 1678, 1726, 1774, 1966, 2038, 2374, 2566, 2614, 2638, 2734, 2878, 2974, 3046, 3238, 3646, 3814, 4054, 4078, 4126, 4198, 4414, 4894, 4918, 5158, 5638, 5758, 5806, 5926, 5998
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 30 2011

Keywords

Comments

For n > 2, A001221(a(n)) = A001221(A000010(a(n))) = 2, and A008683(a(n)) = A008683(A000010(a(n))) = 1. - Torlach Rush, Aug 23 2018
For n > 1, A000010(a(n)) = A077065(n-1). - Torlach Rush, Sep 11 2018

Crossrefs

Programs

  • Magma
    [9] cat [2*p: p in PrimesUpTo(3000) | IsPrime((p - 1) div 2)]; // Vincenzo Librandi, Aug 25 2018
  • Maple
    9, 10, op(select(s -> isprime(s/2) and isprime((s-2)/4), [seq(s,s=6..10000,8)])); # Robert Israel, Apr 06 2016
  • Mathematica
    Select[Range@ 6000, PrimeOmega@ # == 2 && PrimeQ[EulerPhi[#]/2] &] (* Michael De Vlieger, Apr 06 2016 *)
  • PARI
    isok(n) = (bigomega(n)== 2) && isprime(eulerphi(n)/2); \\ Michel Marcus, Apr 06 2016
    

Formula

a(n) = 2*A005385(n-1), n>1.
a(n) = 4*A005384(n-1) + 2, n > 1. - Michel Marcus, Apr 02 2020

Extensions

Corrected by R. J. Mathar, Oct 13 2011

A087656 Let f be defined on the rationals by f(p/q) =(p+1)/(q+1)=p_{1}/q_{1} where (p_{1},q_{1})=1. Let f^k(p/q)=p_{k}/q_{k} where (p_{k},q_{k})=1. Sequence gives least k such that p_{k}-q_{k} = 1 starting at n.

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 3, 4, 5, 10, 4, 12, 7, 6, 4, 16, 5, 18, 6, 8, 11, 22, 5, 8, 13, 6, 8, 28, 7, 30, 5, 12, 17, 10, 6, 36, 19, 14, 7, 40, 9, 42, 12, 8, 23, 46, 6, 12, 9, 18, 14, 52, 7, 14, 9, 20, 29, 58, 8, 60, 31, 10, 6, 16, 13, 66, 18, 24, 11, 70, 7, 72, 37, 10, 20, 16, 15, 78, 8, 8, 41, 82
Offset: 3

Views

Author

Benoit Cloitre, Oct 04 2003

Keywords

Comments

Proof that this is the same as A059975 except for offset, from Joseph Myers, Feb 21 2004. Claim: a(n+1) = A059975(n). If p is the least prime factor of n then the rule here gives (n+1)/1 -> (n+2)/2 -> ... -> (n+p)/p = (n/p + 1)/1 so a(n+1) = a(n/p + 1) + (p-1) and clearly A059975(n) = A059975(n/p) + (p-1). The natural start for the induction is A059975(1) = a(2) = 0 (one place before the currently listed sequences start).

Examples

			6 -> (6+1)/(1+1) = 7/2 -> (7+1)/(2+1) = 8/3 -> (8+1)/(3+1) = 9/4 -> (9+1)/(4+1) = 2/1 and 2-1 = 1 hence a(6) = 4.
		

Crossrefs

Same as A059975 apart from offset.

Programs

  • PARI
    a(x)=if(x<0, 0, c=0; while(abs(numerator(x)-denominator(x)-1)>0, x=(numerator(x)+1)/(denominator(x)+1); c++); c)

Formula

If p is prime a(p+1)=p-1; it appears that a(n)=(n-1)/2 iff n is in A079148 or in A053177.
Showing 1-10 of 13 results. Next