cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A030078 Cubes of primes.

Original entry on oeis.org

8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1

Views

Author

Keywords

Comments

Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021

Examples

			a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
		

References

  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.

Crossrefs

Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cf. A060800, A131991, A000578, subsequence of A046099.
Subsequence of A007422 and of A054397.

Programs

Formula

n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A064380(a(n)) = A000010(a(n)). - Vladimir Shevelev, Apr 19 2010
A003415(a(n)) = A079705(n). - Reinhard Zumkeller, Jun 26 2011
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
a(n) = A119959(n) * A008864(n) -1.- R. J. Mathar, Aug 13 2019
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)

A335988 Cubefull exponentially odd numbers: numbers whose prime factorization contains only odd exponents that are larger than 1.

Original entry on oeis.org

1, 8, 27, 32, 125, 128, 216, 243, 343, 512, 864, 1000, 1331, 1944, 2048, 2187, 2197, 2744, 3125, 3375, 3456, 4000, 4913, 6859, 7776, 8192, 9261, 10648, 10976, 12167, 13824, 16000, 16807, 17496, 17576, 19683, 24389, 25000, 27000, 29791, 30375, 31104, 32768, 35937
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2020

Keywords

Comments

This sequence is a permutation of A355038.
This sequence is also a permutation of the exponentially odd numbers (A268335) multiplied by the square of their squarefree kernel (A007947).
a(n)/rad(a(n)) is a permutation of the squares.
a(n)/rad(a(n))^2 is a permutation of the exponentially odd numbers.

Examples

			8 = 2^3 is a term since the exponent of its prime factor 2 is 3 which is odd and larger than 1.
		

Crossrefs

Intersection of A001694 and A268335.
Intersection of A036966 and A268335.
A355038 in ascending order.
A030078, A050997, A092759, A179665, A079395 and A138031 are subsequences.

Programs

  • Mathematica
    Join[{1}, Select[Range[10^5], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
  • Python
    from math import isqrt, prod
    from sympy import factorint
    def afind(N): # all terms up to limit N
        cands = (n**2*prod(factorint(n**2)) for n in range(1, isqrt(N//2)+2))
        return sorted(c for c in cands if c <= N)
    print(afind(4*10**4)) # Michael S. Branicky, Jun 16 2022

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911... (A065487).

A030630 Numbers with 12 divisors.

Original entry on oeis.org

60, 72, 84, 90, 96, 108, 126, 132, 140, 150, 156, 160, 198, 200, 204, 220, 224, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 352, 364, 372, 380, 392, 414, 416, 444, 460, 476, 486, 490, 492, 495, 500, 516, 522, 525, 532, 544, 550
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^11 A079395, p*q^5 A178740, p*q*r^2 A085987, or p^2*q^3 A143610, where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010, Mar 17 2010

Programs

  • Mathematica
    Select[Range[600], Length[Divisors[ # ]] == 12 &] (* Stefan Steinerberger, Apr 10 2006 *)
    Select[Range[600],DivisorSigma[0,#]==12&] (* Harvey P. Dale, Jun 01 2016 *)
  • PARI
    for(n=1, 1e3, if(numdiv(n)==12, print1(n,", "))) \\ Altug Alkan, Nov 11 2015

A319075 Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

If n = p - 1 where p is prime, then row n lists the numbers with p divisors.
The partial sums of column k give the column k of A319076.

Examples

			The corner of the square array is as follows:
         A000079 A000244 A000351  A000420    A001020    A001022     A001026
A000012        1,      1,      1,       1,         1,         1,          1, ...
A000040        2,      3,      5,       7,        11,        13,         17, ...
A001248        4,      9,     25,      49,       121,       169,        289, ...
A030078        8,     27,    125,     343,      1331,      2197,       4913, ...
A030514       16,     81,    625,    2401,     14641,     28561,      83521, ...
A050997       32,    243,   3125,   16807,    161051,    371293,    1419857, ...
A030516       64,    729,  15625,  117649,   1771561,   4826809,   24137569, ...
A092759      128,   2187,  78125,  823543,  19487171,  62748517,  410338673, ...
A179645      256,   6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
		

Crossrefs

Other rows n: A030635 (n=16), A030637 (n=18), A137486 (n=22), A137492 (n=28), A139571 (n=30), A139572 (n=36), A139573 (n=40), A139574 (n=42), A139575 (n=46), A173533 (n=52), A183062 (n=58), A183085 (n=60), A261700 (n=100).
Main diagonal gives A093360.
Second diagonal gives A062457.
Third diagonal gives A197987.
Removing the 1's we have A182944/ A182945.

Programs

  • PARI
    T(n, k) = prime(k)^n;

Formula

T(n,k) = A000040(k)^n, n >= 0, k >= 1.

A275387 Numbers of ordered pairs of divisors d < e of n such that gcd(d, e) > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 6, 0, 8, 0, 8, 2, 2, 0, 18, 1, 2, 3, 8, 0, 15, 0, 10, 2, 2, 2, 24, 0, 2, 2, 18, 0, 15, 0, 8, 8, 2, 0, 32, 1, 8, 2, 8, 0, 18, 2, 18, 2, 2, 0, 44, 0, 2, 8, 15, 2, 15, 0, 8, 2, 15, 0, 49, 0, 2, 8, 8, 2, 15, 0, 32, 6, 2
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2016

Keywords

Comments

Number of elements in the set {(x, y): x|n, y|n, x < y, gcd(x, y) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n)=0 if n prime;
a(n)=1 if n = p^2 for p prime (A001248);
a(n)=2 if n is a squarefree semiprime (A006881);
a(n)=3 if n = p^3 for p prime (A030078);
a(n)=6 if n = p^4 for p prime (A030514);
a(n)=8 if n is a number which is the product of a prime and the square of a different prime (A054753);
a(n)=10 if n = p^5 for p prime (A050997);
a(n)=15 if n is in the set {A007304} union {64} = {30, 42, 64, 66, 70,...} = {Sphenic numbers} union {64};
a(n)=18 if n is the product of the cube of a prime (A030078) and a different prime (see A065036);
a(n)=21 if n = p^7 for p prime (A092759);
a(n)=24 if n is square of a squarefree semiprime (A085986);
a(n)=32 if n is the product of the 4th power of a prime (A030514) and a different prime (see A178739);
a(n)=36 if n = p^9 for p prime (A179665);
a(n)=44 if n is the product of exactly four primes, three of which are distinct (A085987);
a(n)=45 if n is a number with 11 divisors (A030629);
a(n)=49 if n is of the form p^2*q^3, where p,q are distinct primes (A143610);
a(n)=50 if n is the product of the 5th power of a prime (A050997) and a different prime (see A178740);
a(n)=55 if n if n = p^11 for p prime(A079395);
a(n)=72 if n is a number with 14 divisors (A030632);
a(n)=80 if n is the product of four distinct primes (A046386);
a(n)=83 if n is a number with 15 divisors (A030633);
a(n)=89 if n is a number with prime factorization pqr^3 (A189975);
a(n)=96 if n is a number that are the cube of a product of two distinct primes (A162142);
a(n)=98 if n is the product of the 7th power of a prime and a distinct prime (p^7*q) (A179664);
a(n)=116 if n is the product of exactly 2 distinct squares of primes and a different prime (p^2*q^2*r) (A179643);
a(n)=126 if n is the product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2) (A179646);
a(n)=128 if n is the product of the 8th power of a prime and a distinct prime (p^8*q) (A179668);
a(n)=150 if n is the product of the 4th power of a prime and 2 different distinct primes (p^4*q*r) (A179644);
a(n)=159 if n is the product of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3) (A179666).
It is possible to continue with a(n) = 162, 178, 209, 224, 227, 238, 239, 260, 289, 309, 320, 333,...

Examples

			a(12) = 8 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j)>1 for the 8 following pairs of divisors: (2,4), (2,6), (2,12), (3,6), (3,12), (4,6), (4,12) and (6,12).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    x:=divisors(n):n0:=nops(x):it:=0:
    for i from 1 to n0 do:
      for j from i+1 to n0 do:
       if gcd(x[i],x[j])>1
        then
        it:=it+1:
        else
       fi:
      od:
    od:
      printf(`%d, `,it):
    od:
  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2021 *)
  • PARI
    a(n)=my(d=divisors(n)); sum(i=2,#d, sum(j=1,i-1, gcd(d[i],d[j])>1)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    a(n)=my(f=factor(n)[,2],t=prod(i=1,#f,f[i]+1)); t*(t-1)/2 - (prod(i=1,#f,2*f[i]+1)+1)/2 \\ Charles R Greathouse IV, Aug 03 2016

Formula

a(n) = A066446(n) - A063647(n).
a(n) = Sum_{d1|n, d2|n, d1Wesley Ivan Hurt, Jan 01 2021

A381312 Numbers whose powerful part (A057521) is a power of a prime with an odd exponent >= 3 (A056824).

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 375, 376, 378, 384, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 512, 513, 520, 536, 544
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Subsequence of A301517 and A374459 and first differs from them at n = 21. A301517(21) = A374459(21) = 216 is not a term of this sequence.
Numbers having exactly one non-unitary prime factor and its multiplicity is odd.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., 2*m+1} with m >= 1, i.e., any number (including zero) of 1's and then a single odd number > 1.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} 1/((p-1)*(p+1)^2) = 0.093382464285953613312...

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 1 && OddQ[e[[1]]] && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] % 2 && e[1] > 1 && (#e == 1 || e[2] == 1));

A376171 Powerful numbers whose prime factorization has an odd maximum exponent.

Original entry on oeis.org

8, 27, 32, 72, 108, 125, 128, 200, 216, 243, 288, 343, 392, 500, 512, 675, 800, 864, 968, 972, 1000, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1800, 1944, 2048, 2187, 2197, 2312, 2592, 2700, 2744, 2888, 3087, 3125, 3200, 3267, 3375, 3456, 3528, 3872, 3888, 4000
Offset: 1

Views

Author

Amiram Eldar, Sep 13 2024

Keywords

Comments

Subsequence of A102834 and first differs from it at n = 14: A102834(14) = 432 = 2^4 * 3^3 is not a term of this sequence.
Powerful numbers k such that A051903(k) is odd.
Equivalently, numbers whose prime factorization exponents are all larger than 1 and their maximum is odd. The maximum exponent in the prime factorization of 1 is considered to be A051903(1) = 0, and therefore 1 is not a term of this sequence.
The numbers of terms that do not exceed the 10^k-powerful number (A376092(k)), for k = 1, 2, ..., are 3, 40, 416, 4255, 42829, 429393, 4299797, 43022803, ... . Apparently, the asymptotic density of this sequence within the powerful numbers (A001694) exists and approximately equals 0.43.

Crossrefs

Complement of A376170 within A001694.
Intersection of A001694 and A376142.
Subsequence of A102834.
Subsequences: A030078, A050997, A079395, A092759, A138031, A179665, A335988 \ {1}.

Programs

  • Mathematica
    seq[lim_] := Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}], # > 1 && OddQ[Max[FactorInteger[#][[;; , 2]]]] &]; seq[10^4]
  • PARI
    is(k) = {my(f = factor(k), e = f[,2]); #e && ispowerful(f) && vecmax(e) % 2;}

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} (-1)^k * s(k) = 0.29116340833243888282..., where s(k) = Product_{p prime} (1 + Sum_{i=2..k} 1/p^i).

A234740 Sum of the eleventh powers of the first n primes.

Original entry on oeis.org

2048, 179195, 49007320, 2026334063, 287338004674, 2079498398711, 36351394706344, 152841653604563, 1105651411518490, 13306161177224319, 38714638073629150, 216632259853089563, 766961291569338004, 1696255031040560711, 4168414246124573014, 13437450175496764611
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Partial sums of A079395.

Programs

  • Mathematica
    Table[Sum[Prime[k]^11, {k, n}], {n, 1000}]
    Accumulate[Prime[Range[20]]^11] (* This program is several hundred times faster than the first program, above, in calculating the first 1000 terms of the sequence. *) (* Harvey P. Dale, Sep 17 2023 *)
  • PARI
    s=[]; for(n=1, 15, s=concat(s, sum(i=1, n, prime(i)^11))); s \\ Colin Barker, Jan 20 2014

Formula

a(n) = Sum_{k=1..n} prime(k)^11.

A369209 Numbers whose number of divisors has the largest prime factor 3.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 32, 36, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 96, 98, 99, 100, 108, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 160, 164, 169, 171, 172, 175, 180, 188, 196, 198, 200, 204, 207, 212, 220, 224, 225, 228
Offset: 1

Views

Author

Amiram Eldar, Jan 16 2024

Keywords

Comments

Subsequence of A059269 and first differs from it at n = 36: A059269(136) = 44 has 15 = 3 * 5 divisors and thus is not a term of this sequence.
Numbers k such that A000005(k) is in A065119.
Numbers k such that A071188(k) = 3.
Equals the complement of A354181, without the terms of A036537 (i.e., complement(A354181) \ A036537).
The asymptotic density of this sequence is Product_{p prime} (1-1/p) * (Sum_{k>=1} 1/p^(A003586(k)-1)) - A327839 = 0.26087647470200496716... .

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; Select[Range[300], gpf[DivisorSigma[0, #]] == 3 &]
  • PARI
    gpf(n) = if(n == 1, 1, vecmax(factor(n)[, 1]));
    is(n) = gpf(numdiv(n)) == 3;

A381316 Numbers whose powerful part (A057521) is a power of a prime with an exponent >= 3 (A246549).

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 80, 81, 88, 96, 104, 112, 120, 125, 128, 135, 136, 152, 160, 162, 168, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 296, 297, 304, 312, 320, 328, 336, 343, 344, 351, 352, 368, 375, 376, 378
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

First differs from A344653 and A345193 at n = 17: a(17) = 120 is not a term of these sequences.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., m} with m >= 3, i.e., any number (including zero) of 1's and then a single number >= 3.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} 1/(p*(p^2-1)) = A369632 / A013661 = 0.13463358553764438661... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 2 && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] > 2 && (#e == 1 || e[2] == 1));
Showing 1-10 of 10 results.