A165884
Irregular table of negated A080092 and a leading column of 1's.
Original entry on oeis.org
1, 1, -2, 1, -2, -3, 1, -2, -3, -5, 1, -2, -3, -7, 1, -2, -3, -5, 1, -2, -3, -11, 1, -2, -3, -5, -7, -13, 1, -2, -3, -1, -2, -3, -5, -17
Offset: 0
1;
1, -2;
1, -2, -3;
1, -2, -3, -5;
1, -2, -3, -7;
1, -2, -3, -5;
1, -2, -3, -11;
1, -2, -3, -5, -7, -13;
1, -2, -3;
A027642
Denominator of Bernoulli number B_n.
Original entry on oeis.org
1, 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, 1, 138, 1, 2730, 1, 6, 1, 870, 1, 14322, 1, 510, 1, 6, 1, 1919190, 1, 6, 1, 13530, 1, 1806, 1, 690, 1, 282, 1, 46410, 1, 66, 1, 1590, 1, 798, 1, 870, 1, 354, 1, 56786730, 1
Offset: 0
The sequence of Bernoulli numbers B_n (n = 0, 1, 2, ...) begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ... [Clarified by _N. J. A. Sloane_, Jun 02 2025]
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
- Jacob Bernoulli, Ars Conjectandi, Basel: Thurneysen Brothers, 1713. See page 97.
- Thomas Clausen, "Lehrsatz aus einer Abhandlung Über die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352 (see P. Luschny link).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 106-108.
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
- L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.
- Roger Plymen, The Great Prime Number Race, AMS, 2020. See pp. 8-10.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 161.
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Beáta Bényi and Péter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
- Kwang-Wu Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- Bakir Farhi, Formulas Involving Bernoulli and Stirling Numbers of Both Kinds, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.6. See p. 16.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- H. W. Gould and Jocelyn Quaintance, Bernoulli Numbers and a New Binomial Transform Identity, J. Int. Seq. 17 (2014) # 14.2.2
- Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6
- Peter Luschny, Generalized Clausen numbers: definition and application.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- Antônio Francisco Neto, Carlitz's Identity for the Bernoulli Numbers and Zeon Algebra, J. Int. Seq. 18 (2015) # 15.5.6.
- Ezgi Polat and Yilmaz Simsek, New formulas for Bernoulli polynomials with applications of matrix equations and Laplace transform, Pub. de l'Inst. Math. (2024) Vol. 116, Issue 130, 59-74. See p. 69.
- Carl Pomerance and Samuel S. Wagstaff Jr, The denominators of the Bernoulli numbers, arXiv:2105.13252 [math.NT], 2021.
- Jonathan Sondow and Emmanuel Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 5.
- Matthew Roughan, The Polylogarithm Function in Julia, arXiv:2010.09860 [math.NA], 2020.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- Wikipedia, Bernoulli number
- Index entries for sequences related to Bernoulli numbers.
- Index entries for "core" sequences
See
A027641 (numerators) for full list of references, links, formulas, etc.
-
a027642 n = a027642_list !! n
a027642_list = 1 : map (denominator . sum) (zipWith (zipWith (%))
(zipWith (map . (*)) (tail a000142_list) a242179_tabf) a106831_tabf)
-- Reinhard Zumkeller, Jul 04 2014
-
[Denominator(Bernoulli(n)): n in [0..150]]; // Vincenzo Librandi, Mar 29 2011
-
(-1)^n*sum( (-1)^'m'*'m'!*stirling2(n,'m')/('m'+1),'m'=0..n);
A027642 := proc(n) denom(bernoulli(n)) ; end: # Zerinvary Lajos, Apr 08 2009
-
Table[ Denominator[ BernoulliB[n]], {n, 0, 68}] (* Robert G. Wilson v, Oct 11 2004 *)
Denominator[ Range[0, 68]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 68}], x]]
(* Alternative code using Clausen Theorem: *)
A027642[k_Integer]:=If[EvenQ[k],Times@@Table[Max[1,Prime[i]*Boole[Divisible[k,Prime[i]-1]]],{i,1,PrimePi[2k]}],1+KroneckerDelta[k,1]]; (* Enrique Pérez Herrero, Jul 15 2010 *)
a[0] = 1; a[1] = 2; a[n_?OddQ] = 1; a[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 12 2012, after Ilan Vardi, when direct computation for large n is unfeasible *)
-
a(n)=if(n<0, 0, denominator(bernfrac(n)))
-
a(n) = if(n == 0 || (n > 1 && n % 2), 1, vecprod(select(x -> isprime(x), apply(x -> x + 1, divisors(n))))); \\ Amiram Eldar, Apr 24 2024
-
from sympy import bernoulli
[bernoulli(i).denominator for i in range(51)] # Indranil Ghosh, Mar 18 2017
-
def A027642_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
f *= n
for k in range(n, 0, -1):
C[k] = C[k-1] / (k+1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).denominator())
return R
A027642_list(62) # Peter Luschny, Feb 20 2016
A002445
Denominators of Bernoulli numbers B_{2n}.
Original entry on oeis.org
1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770, 6, 33330, 4326, 1590, 642, 209191710, 1518, 1671270, 42
Offset: 0
B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 136.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- See A000367 for further references and links (there are a lot).
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Amelia Bucur, José Luis López-Bonilla, and Jaime Robles-García, A note on the Namias identity for Bernoulli numbers, Journal of Scientific Research (Banaras Hindu University, Varanasi), Vol. 56 (2012), 117-120.
- Suyuong Choi and Younghan Yoon, A decomposition of graph a-numbers, arXiv:2508.06855 [math.CO], 2025. See p. 13.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3
- Shizuo Kaji, Toshiaki Maeno, Koji Nuida, and Yasuhide Numata, Polynomial Expressions of Carries in p-ary Arithmetics, arXiv preprint arXiv:1506.02742 [math.CO], 2015.
- Takao Komatsu, Florian Luca, and Claudio de J. Pita Ruiz V. , A note on the denominators of Bernoulli numbers, Proc. Japan Acad., 90, Ser. A (2014), p. 71-72.
- Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6
- Hong-Mei Liu, Shu-Hua Qi, and Shu-Yan Ding, Some Recurrence Relations for Cauchy Numbers of the First Kind, JIS 13 (2010) # 10.3.8.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- Niels Nielsen, Traité élémentaire des nombres de Bernoulli, Gauthier-Villars, 1923, pp. 398.
- Niels Erik Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- Simon Plouffe, The First 498 Bernoulli numbers [Project Gutenberg Etext]
- Jan W. H. Swanepoel, A Short Simple Probabilistic Proof of a Well Known Identity and the Derivation of Related New Identities Involving the Bernoulli Numbers and the Euler Numbers, Integers (2025) Vol. 25, Art. No. A50. See p. 2.
- Index entries for sequences related to Bernoulli numbers.
Cf.
A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
See
A000367 for numerators. Cf.
A027762,
A027641,
A027642,
A002882,
A003245,
A127187,
A127188,
A138239,
A028246,
A143343,
A080092,
A001897,
A277087.
-
[Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
-
A002445 := n -> mul(i,i=select(isprime,map(i->i+1,numtheory[divisors] (2*n)))): seq(A002445(n),n=0..40); # Peter Luschny, Aug 09 2011
# Alternative
N:= 1000: # to get a(0) to a(N)
A:= Vector(N,2):
for p in select(isprime,[seq(2*i+1,i=1..N)]) do
r:= (p-1)/2;
for n from r to N by r do
A[n]:= A[n]*p
od
od:
1, seq(A[n],n=1..N); # Robert Israel, Nov 16 2014
-
Take[Denominator[BernoulliB[Range[0,100]]],{1,-1,2}] (* Harvey P. Dale, Oct 17 2011 *)
-
a(n)=prod(p=2,2*n+1,if(isprime(p),if((2*n)%(p-1),1,p),1)) \\ Benoit Cloitre
-
A002445(n,P=1)=forprime(p=2,1+n*=2,n%(p-1)||P*=p);P \\ M. F. Hasler, Jan 05 2016
-
a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
-
def A002445(n):
if n == 0:
return 1
M = (i + 1 for i in divisors(2 * n))
return prod(s for s in M if is_prime(s))
[A002445(n) for n in (0..57)] # Peter Luschny, Feb 20 2016
A143343
Triangle T(n,k) (n>=0, 1<=k<=n+1) read by rows: T(n,1)=1 for n>=0, T(1,2)=2. If n>=3 is odd then T(n,k)=1 for all k. If n>=3 is even then if k is prime and k-1 divides n then T(n,k)=k, otherwise T(n,k)=1.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
The triangle begins:
1,
1,2,
1,2,3,
1,1,1,1,
1,2,3,1,5,
1,1,1,1,1,1,
1,2,3,1,1,1,7,
1,1,1,1,1,1,1,1,
1,2,3,1,5,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
1,2,3,1,1,1,1,1,1,1,11,
1,1,1,1,1,1,1,1,1,1,1,1,
1,2,3,1,5,1,7,1,1,1,1,1,13,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,
...
- H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
A165908
Irregular triangle with the terms in the Staudt-Clausen theorem for the nonzero Bernoulli numbers multiplied by the product of the associated primes.
Original entry on oeis.org
1, 2, -1, 6, -3, -2, 30, -15, -10, -6, 42, -21, -14, -6, 30, -15, -10, -6, 66, -33, -22, -6, 2730, -1365, -910, -546, -390, -210, 12, -3, -2, -3060, -255, -170, -102, -30, 44688, -399, -266, -114, -42
Offset: 0
The decomposition of B_10 is 5/66 = 1-1/2-1/3-1/11. Multiplied by the product 2*3*11=66 of the denominators this becomes 5=66-33-22-6, and the 4 terms on the right hand side become one row of the table.
1;
2,-1;
6,-3,-2;
30,-15,-10,-6;
42,-21,-14,-6;
30,-15,-10,-6;
66,-33,-22,-6;
2730,-1365,-910,-546,-390,-210;
-
A165908 := proc(n) local i,p; Ld := [] ; pp := 1 ; for i from 1 do p := ithprime(i) ; if (2*n) mod (p-1) = 0 then Ld := [op(Ld),-1/p] ; pp := pp*p ; elif p-1 > 2*n then break; end if; end do: Ld := [A000146(n),op(Ld)] ; [seq(op(i,Ld)*pp,i=1..nops(Ld))] ; end proc: # for n>=2, R. J. Mathar, Jul 08 2011
-
a146[n_] := Sum[ Boole[ PrimeQ[d+1]]/(d+1), {d, Divisors[2n]}] + BernoulliB[2n]; primes[n_] := Select[ Prime /@ Range[n+1], Divisible[2n, #-1]& ]; row[n_] := With[{pp = primes[n]}, Join[{a146[n]}, -1/pp]*Times @@ pp]; Join[{1}, Flatten[ Table[row[n], {n, 0, 9}]]] (* Jean-François Alcover_, Aug 09 2012 *)
A166306
Denominator of Bernoulli_n multiplied by the sum of the associated inverse primes in the Staudt-Clausen theorem, n=1, 2, 4, 6, 8, 10,...
Original entry on oeis.org
1, 5, 31, 41, 31, 61, 3421, 5, 557, 821, 371, 121, 3421, 5, 929, 15745, 557, 5, 2557843, 5, 15541, 1805, 743, 241, 60887, 61, 1673, 821, 929, 301, 79085411, 5, 557, 66961, 31, 4397, 188641729, 5, 31, 3281, 277727, 421, 4462547, 5, 66817, 313477, 1487, 5, 5952449, 5
Offset: 1
The primes associated with B_10 = 5/66 are 2, 3 and 11. 66*(1/2+1/3+1/11) = 33+22+6 = 61 is the representative in this sequence.
-
a146[n_] := Sum[ Boole[ PrimeQ[d+1]]/(d+1), {d, Divisors[2n]}] + BernoulliB[2n]; primes[n_] := Select[ Prime /@ Range[n+1], Divisible[2n, #-1]&]; row[n_] := With[{pp = primes[n]}, Join[{a146[n]}, -1/pp]*Times @@ pp]; a[n_] := -Total[ Select[ row[n-1] // Rest, Negative]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 09 2012 *)
A214867
Quotients of (first) primorial numbers and denominators of Bernoulli numbers B 0, B 1, B 2, B 4, B 6,... .
Original entry on oeis.org
1, 1, 1, 1, 5, 77, 455, 187, 1616615, 437437, 8107385, 607759061, 53773464745, 111446982977, 2180460221945005, 706769865044243, 2275461421392965, 3770118333635711057, 19548063559901161830545, 4094603218587147211, 92990138354449826827902565
Offset: 0
a(0) = 1/1, a(1)= 2/2, a(2) = 6/6, a(3) = 30/30, a(4) =210/42=5.
By product (see A080092):
1,
1,
1,
1,
5,
7 * 11,
5 * 7 *13,
11 * 17,
5 * 7 *11 *13 *17 *19,
7 * 11 *13 *19 *23,
5 * 11 *13 *17 *23 *29,
7 * 13 *17 *19 *23 *29 *31,
5 * 7 *11 *13 *17 *19 *29 *31 *37.
-
a[n_] := Product[ Prime[k], {k,1, n}] / Denominator[ BernoulliB[2*n-2] ]; a[0] = a[1] = 1; Table[a[n],{n,0,20}] (* Jean-François Alcover, Mar 15 2013 *)
Showing 1-7 of 7 results.
Comments