A080379 Least n such that n consecutive values in A080378 equals 2; i.e., exactly n differences between consecutive primes give residues 2 when divided by 4.
5, 2, 9, 15, 39, 32, 305, 51, 2631, 3685, 170, 1156, 8775, 98, 5295, 41914, 106469, 167115, 186917, 1098776, 187784, 976193, 1166047, 423098, 77442332, 2643158, 11004239, 36330320, 259652255, 307899596, 2573725031, 411764049, 4080634008, 14841740642, 6022532018, 17035372732, 35045523209
Offset: 1
Keywords
Examples
n=4: a(4)=15,differences between {47,53,59,61,67} are {6,6,2,6} corresponds to exactly four differences congruent to 2 mod 4,since before and after 47-43=4 or 71-67=4 are congruent to 0 mod 4.
Programs
-
Mathematica
dp[x_] := Mod[Prime[x+1]-Prime[x], 4] pat[x_, h_] := Table[dp[x+j], {j, 0, h-1}] up[x_, h_] := Union[pat[x, h]] Table[fa=1; k=0; Do[s=up[n, h]; s1=Length[s]; s2=Part[u=pat[n+1, h], Length[u]]; s3=Part[w=pat[n-1, h], 1]; If[Equal[s1, 1]&&Equal[fa, 1]&&Equal[s2, 0]&&Equal[s3, 0], k=k+1; Print[{k, h, n, Prime[n], s, s1}]; fa=0], {n, 2, 200000}], {h, 1, 19}] With[{c=Mod[Differences[Prime[Range[12*10^5]]],4]},Join[{5,2},Drop[ Flatten[ Table[ SequencePosition[ c,Join[ {0},PadRight[ {},n,2],{0}],1][[All,1]],{n,0,25}]]+1,3]]] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Dec 01 2022 *)
Extensions
a(20)-a(37) from Donovan Johnson, Nov 16 2010
Comments