cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081254 Numbers k such that A081252(m)/m^2 has a local maximum for m = k.

Original entry on oeis.org

1, 3, 6, 13, 26, 53, 106, 213, 426, 853, 1706, 3413, 6826, 13653, 27306, 54613, 109226, 218453, 436906, 873813, 1747626, 3495253, 6990506, 13981013, 27962026, 55924053, 111848106, 223696213, 447392426, 894784853, 1789569706, 3579139413
Offset: 1

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local maxima, lim_{m->inf} A081252(m)/m^2 = 1/10. For local minima cf. A081253.
Row sums of the triangle A181971. - Reinhard Zumkeller, Jul 09 2012

Examples

			13 is a term since A081252(12)/12^2 = 15/144 = 0.104..., A081252(13)/13^2 = 18/169 = 0.106..., A081252(14)/14^2 = 20/196 = 0.102....
		

Crossrefs

Programs

  • Magma
    [Floor(2^(n-1)*5/3): n in [1..40]]; // Vincenzo Librandi, Apr 04 2012
    
  • Maple
    seq(floor(2^(n-1)*5/3),n=1..35); # Muniru A Asiru, Sep 20 2018
  • Mathematica
    Rest@CoefficientList[Series[-(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)), {x, 0, 32}], x] (* Vincenzo Librandi, Apr 04 2012 *)
    a[n_]:=Floor[2^(n-1)*5/3]; Array[a,33,1] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = 2^(n-1)*5\3; \\ Altug Alkan, Sep 21 2018

Formula

a(n) = floor(2^(n-1)*5/3). [corrected by Michel Marcus, Sep 21 2018]
a(n) = a(n-2) + 5*2^(n-3) for n > 2;
a(n+2) - a(n) = A020714(n-1);
a(n) + a(n-1) = A052549(n-1) for n > 1;
a(2*n+1) = A020989(n); a(2n) = A072197(n-1);
a(n+1) - a(n) = A048573(n-1).
G.f.: -(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)).
a(n) = 5*2^(n-1)/3 + (-1)^n/6-1/2. a(n) = 2*a(n-1) + (1+(-1)^n)/2, a(1)=1. - Paul Barry, Mar 24 2003
a(2n) = 2*a(2*n-1) + 1, a(2*n+1) = 2*a(2*n), a(1)=1. a(n) = A000975(n-1) + 2^(n-1). - Philippe Deléham, Oct 15 2006
a(n) = A005578(n) + A000225(n-1). - Yuchun Ji, Sep 21 2018
a(n) - a(n-2) = 2 * (a(n-1) - a(n-3)), with a(0..2)=[1,3,6]. - Yuchun Ji, Mar 18 2020

A081253 Numbers k such that A081252(m)/m^2 has a local minimum for m = k.

Original entry on oeis.org

2, 4, 9, 18, 37, 74, 149, 298, 597, 1194, 2389, 4778, 9557, 19114, 38229, 76458, 152917, 305834, 611669, 1223338, 2446677, 4893354, 9786709, 19573418, 39146837, 78293674, 156587349, 313174698, 626349397, 1252698794, 2505397589
Offset: 1

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local minima, lim_{n->infinity} A081252(n)/n^2 = 1/14. For local maxima cf. A081254.

Examples

			9 is a term since A081252(8)/8^2 = 5/64 = 0.078, A081252(9)/9^2 = 6/81 = 0.074, A081252(10)/10^2 = 8/100 = 0.080.
		

Crossrefs

Cf. A266071 (binary).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x (x^2 - 2)/((x - 1) (x + 1) (2 x - 1)), {x, 0, 31}], x]
  • Python
    print([7*2**n//6 for n in range(1, 50)]) # Karl V. Keller, Jr., May 22 2022

Formula

a(n) = floor(2^(n-1)*7/3).
a(n) = a(n-2) + 7*2^(n-3) for n > 2; a(n+2) - a(n) = A005009(n-1); a(n+1) - a(n) = A062092(n-1).
G.f.: -x*(x^2 - 2)/((x - 1)*(x + 1)*(2*x - 1)).
a(n) = 2*a(n-1) for even n, otherwise a(n) = 2*a(n-1)+1, with a(1)=2. - Bruno Berselli, Jun 19 2014

Extensions

Formulas adjusted to be consistent with offset 1 by Pontus von Brömssen, Sep 27 2021

A053646 Distance to nearest power of 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Offset: 1

Views

Author

Henry Bottomley, Mar 22 2000

Keywords

Comments

Sum_{j=1..2^(k+1)} a(j) = A002450(k) = (4^k - 1)/3. - Klaus Brockhaus, Mar 17 2003

Examples

			a(10)=2 since 8 is closest power of 2 to 10 and |8-10| = 2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (h-> min(n-h, 2*h-n))(2^ilog2(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 28 2021
  • Mathematica
    np2[n_]:=Module[{min=Floor[Log[2,n]],max},max=min+1;If[2^max-nHarvey P. Dale, Feb 21 2012 *)
  • PARI
    a(n)=vecmin(vector(n,i,abs(n-2^(i-1))))
    
  • PARI
    for(n=1,89,p=2^floor(0.1^25+log(n)/log(2)); print1(min(n-p,2*p-n),","))
    
  • PARI
    a(n) = my (p=#binary(n)); return (min(n-2^(p-1), 2^p-n)) \\ Rémy Sigrist, Mar 24 2018
    
  • Python
    def A053646(n): return min(n-(m := 2**(len(bin(n))-3)),2*m-n) # Chai Wah Wu, Mar 08 2022

Formula

a(2^k+i) = i for 1 <= i <= 2^(k-1); a(3*2^k+i) = 2^k-i for 1 <= i <= 2^k; (Sum_{k=1..n} a(k))/n^2 is bounded. - Benoit Cloitre, Aug 17 2002
a(n) = min(n-2^floor(log(n)/log(2)), 2*2^floor(log(n)/log(2))-n). - Klaus Brockhaus, Mar 08 2003
From Peter Bala, Aug 04 2022: (Start)
a(n) = a( 1 + floor((n-1)/2) ) + a( ceiling((n-1)/2) ).
a(2*n) = 2*a(n); a(2*n+1) = a(n) + a(n+1) for n >= 2. Cf. A006165. (End)
a(n) = 2*A006165(n) - n for n >= 2. - Peter Bala, Sep 25 2022

A179896 Sum of the numbers between k := n-th nonprime and 2k (like a jump in a Sieve of Eratosthenes).

Original entry on oeis.org

0, 18, 45, 84, 108, 135, 198, 273, 315, 360, 459, 570, 630, 693, 828, 900, 975, 1053, 1134, 1305, 1488, 1584, 1683, 1785, 1890, 2109, 2223, 2340, 2583, 2838, 2970, 3105, 3384, 3528, 3675, 3825, 3978, 4293, 4455, 4620, 4788, 4959, 5310, 5673, 5859, 6048, 6240, 6435
Offset: 1

Views

Author

Odimar Fabeny, Jul 31 2010

Keywords

Comments

The values 4, 7, 10... (A016777 for n>1) are the values of floor( a(k)/ A018252(k) ) where k runs through the indices where A179879(k) mod A018252(k) != 0. - Odimar Fabeny.
Proof: a(k)/A018252(k) is 3*(A081252(k)-1)/2. This is a non-integer iff A018252(k) is even. Since the n-th even nonprime is 2*n+2, floor(3*(2*n+1)/2) = 3*n+1=a(n). - Robert Israel, Aug 27 2014

Examples

			0(0) = 0, 1(2) = 0, 4(8) = 5,6,7 = 18, 6(12) = 7,8,9,10,11 = 45 and so on.
		

Crossrefs

Programs

  • Maple
    ithnonprime := proc(n)local k: option remember: if(n=1)then return 1: else k := procname(n-1)+1: while true do if(not isprime(k))then return k fi: k:=k+1: od: fi: end:
    A179896 := proc(n)local k: k:=ithnonprime(n): return 3*k*(k-1)/2: end:
    seq(A179896(n),n=1..40); # Nathaniel Johnston, Apr 21 2011
  • Mathematica
    f[n_] := Plus @@ Range[n + 1, 2 n - 1]; f /@ Select[ Range@ 64, ! PrimeQ@# &] (* Robert G. Wilson v, Sep 02 2010 *)

Formula

a(n) = A045943(A141468(n+1)-1). - R. J. Mathar, Sep 01 2010

Extensions

More terms from Odimar Fabeny, Aug 11 2010
Offset adapted to A141468 and to match another 0 - R. J. Mathar, Sep 01 2010
Showing 1-4 of 4 results.