A332493 The minimal Skewes number for prime n-tuplets, choosing the n-tuplet with latest occurrence of the first sign change relative to the Hardy-Littlewood prediction when more than one type of n-tuplets exists (A083409(n)>1) for the given n.
1369391, 87613571, 1172531, 216646267, 251331775687, 214159878489239, 750247439134737983
Offset: 2
Examples
Denote by pi_n(x) the n-tuplet counting function, C_n the corresponding Hardy-Littlewood constant, and Li_n(x) the integral from 2 to x of (1/(log t)^n) dt. For 7-tuples with pattern (0 2 8 12 14 18 20) we have the Skewes number p=214159878489239; this is the initial prime p in the 7-tuple where for the first time we have pi_7(p) > C_7 Li_7(p). For the other dense pattern (0 2 6 8 12 18 20), the first sign change of pi_7(x) - C_7 Li_7(x) occurs earlier, at 7572964186421. Therefore we have a(7)=214159878489239, while A210439(7)=7572964186421.
Links
- Tony Forbes and Norman Luhn, Prime k-tuplets
- Alexei Kourbatov, Optimized PARI code for computing a(7)
- Norman Luhn, Database of the smallest prime k-tuplets, compressed files.
- Hugo Pfoertner, Illustration of growth of number of 7-tuples, (2020).
- Hugo Pfoertner, Comparison of number of octuplets needed to achieve the H-L prediction, (2021).
Programs
-
PARI
See A. Kourbatov link.
-
PARI
\\ The first result is A210439(5), the 2nd is a(5) Li(x, n)=intnum(t=2, n, 1/log(t)^x); G5=(15^4/2^11)*0.409874885088236474478781212337955277896358; \\ A269843 n1=0;n2=0;n1found=0;n2found=0;p1=5;p2=7;p3=11;p4=13; forprime(p5=17,10^12,if(p5-p1==12,my(L=Li(5,p1));if(p2-p1==2,n1++;if(!n1found&&n1/L>G5,print(p1," ",p2," ",n1," ",n1/L);n1found=1),n2++;if(!n2found&&n2/L>G5,print(p1," ",p2," ",n2," ",n2/L);n2found=1)));if(n1found&&n2found,break);p1=p2;p2=p3;p3=p4;p4=p5) \\ Hugo Pfoertner, May 12 2020 \\ Code for a(7), similar to A. Kourbatov's code but much shorter. \\ Run time approx. 2 days, prints every 1000th 7-tuple G7=(35^6/(3*2^22))*0.36943751038649868932319074987675; \\ A271742 s=[0,2,8,12,14,18,20]; r=[809, 2069, 2909, 5639, 6689, 7529, 7739, 8999, 10259, 12149, 12359, 14459, 14879, 15929, 17189, 19289, 20549, 21389, 23909, 24119, 26009, 27479, 28529, 28739]; forstep(p0=0,10^15,30030,for(j=1,24,my(p1=p0+r[j],isp=1,L);for(k=1,7,my(p=p1+s[k]);if(!ispseudoprime(p),isp=0;break));if(isp,L=Li(7,p1);n++;if(n%1000==0||n/L>G7,print(p1," ",p1+s[#s]," ",n/L," ",n));if(n/L>G7,break(2))))) \\ Hugo Pfoertner, May 16 2020
Extensions
a(8) from Norman Luhn and Hugo Pfoertner, Oct 21 2021
Comments