cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A098158 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n, 2*k).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 1, 6, 1, 0, 0, 0, 5, 10, 1, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0, 0, 1, 66, 495, 924
Offset: 0

Views

Author

Paul Barry, Aug 29 2004

Keywords

Comments

Row sums are A011782. Inverse is A065547.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jul 29 2006
Sum of entries in column k is A001519(k+1) (the odd-indexed Fibonacci numbers). - Philippe Deléham, Dec 02 2008
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k left-to-right minima. A left-to-right minimum in a permutation a(1)a(2)...a(n) is position i such that a(j) > a(i) for all j < i. - Tian Han, Nov 16 2023

Examples

			Rows begin
  1;
  0, 1;
  0, 1, 1;
  0, 0, 3, 1;
  0, 0, 1, 6, 1;
		

Crossrefs

Cf. A119900. - Philippe Deléham, Dec 02 2008

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 2*(n-k)) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(n, 2*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Table[Binomial[n, 2*(n-k)], {n,0,12}, {k,0,n}]//Flatten (* Michael De Vlieger, Oct 12 2016 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/((1-x*y)^2-x^2*y)+x*O(x^n), n, x) + y*O(y^k),k,y)} (Hanna)
    
  • PARI
    T(n,k) = binomial(n, 2*(n-k));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(n, 2*(n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n,k) = binomial(n,2*(n-k)).
From Tom Copeland, Oct 10 2016: (Start)
E.g.f.: exp(t*x) * cosh(t*sqrt(x)).
O.g.f.: (1/2) * ( 1 / (1 - (1 + sqrt(1/x))*x*t) + 1 / (1 - (1 - sqrt(1/x))*x*t) ).
Row polynomial: x^n * ((1 + sqrt(1/x))^n + (1 - sqrt(1/x))^n) / 2. (End)
Column k is generated by the polynomial Sum_{j=0..floor(k/2)} C(k, 2j) * x^(k-j). - Paul Barry, Jan 22 2005
G.f.: (1-x*y)/((1-x*y)^2 - x^2*y). - Paul D. Hanna, Feb 25 2005
Sum_{k=0..n} x^k*T(n,k)= A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 04 2006, Oct 15 2008, Oct 19 2008
T(n,k) = T(n-1,k-1) + Sum_{i=0..k-1} T(n-2-i,k-1-i); T(0,0)=1; T(n,k)=0 if n < 0 or k < 0 or n < k. E.g.: T(8,5) = T(7,4) + T(6,4) + T(5,3) + T(4,2) + T(3,1) + T(2,0) = 7+15+5+1+0+0 = 28. - Philippe Deléham, Dec 04 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 respectively. - Philippe Deléham, Dec 24 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Nov 14 2008
T(n,k) = A085478(k,n-k). - Philippe Deléham, Dec 02 2008
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0 and T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 15 2012

A030192 Scaled Chebyshev U-polynomial evaluated at sqrt(6)/2.

Original entry on oeis.org

1, 6, 30, 144, 684, 3240, 15336, 72576, 343440, 1625184, 7690464, 36391680, 172207296, 814893696, 3856118400, 18247348224, 86347378944, 408600184320, 1933516832256, 9149499887616, 43295898332160, 204878390667264, 969494954010624, 4587699380060160
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A001834. - Philippe Deléham, Nov 19 2009

Crossrefs

Cf. A083881.

Programs

Formula

a(n) = center term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 4 1 / 1 1 1]. M^n * [1 1 1] = [A083881(n) a(n) A083881(n)]. E.g., a(3) = 144 since M^3 * [1 1 1] = [54 144 54] = [A083881(3) a(3) A083881(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = (sqrt(6))^n*U(n, sqrt(6)/2).
G.f.: 1/(6*(x^2-x+1/6)).
a(2*k+1) = 6^(k+1)*A001353(k), a(2*k) = 6^k*A001834(k).
Preceded by 0, this is the binomial transform of A001353. Its e.g.f. is then exp(3x)*sinh(sqrt(3)x)/sqrt(3). - Paul Barry, May 09 2003
a(n) = Sum_{k=0..n} A109466(n,k)*6^k. - Philippe Deléham, Oct 28 2008
a(n) = ((3+sqrt(3))^n - (3-sqrt(3))^n)/sqrt(12). - Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008
G.f.: A(x)= 1/(1-6*x+6*x^2) = G(0)/(1-3*x) where G(k) = 1 + 3*x/((1-3*x) - x*(1-3*x)/(x + (1-3*x)/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 28 2012

A083882 a(0)=1, a(1)=4, a(n)=8a(n-1)-13a(n-2), n>=2.

Original entry on oeis.org

1, 4, 19, 100, 553, 3124, 17803, 101812, 583057, 3340900, 19147459, 109747972, 629066809, 3605810836, 20668618171, 118473404500, 679095199777, 3892607339716, 22312621120627, 127897073548708, 733112513821513
Offset: 0

Views

Author

Paul Barry, May 08 2003

Keywords

Comments

Binomial transform of A083881.

Programs

  • Mathematica
    LinearRecurrence[{8,-13},{1,4},30] (* Harvey P. Dale, Aug 02 2015 *)

Formula

a(n) = ((4-sqrt(3))^n+(4+sqrt(3))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)4^(n-2k)3^k.
G.f.: (1-4x)/(1-8x+13x^2);
E.g.f.: exp(4x)cosh(x*sqrt(3)).
a(n) = Sum_{k=0..n} A027907(n,2k)*3^k . - J. Conrad, Aug 24 2016

A202023 Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 1, 0, 0, 1, 10, 5, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (1/(1-x), x^2/(1-x)^2).
A skewed version of triangular array A085478.
Mirror image of triangle in A098158.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n),A087455(n), A146559(n), A000012(n), A011782(n), A001333(n),A026150(n), A046717(n), A084057(n), A002533(n), A083098(n),A084058(n), A003665(n), A002535(n), A133294(n), A090042(n),A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
From Gus Wiseman, Jul 08 2025: (Start)
After the first row this is also the number of subsets of {1..n-1} with k maximal runs (sequences of consecutive elements increasing by 1) for k = 0..n. For example, row n = 5 counts the following subsets:
{} {1} {1,3} . . .
{2} {1,4}
{3} {2,4}
{4} {1,2,4}
{1,2} {1,3,4}
{2,3}
{3,4}
{1,2,3}
{2,3,4}
{1,2,3,4}
Requiring n-1 gives A202064.
For anti-runs instead of runs we have A384893.
(End)

Examples

			Triangle begins :
1
1, 0
1, 1, 0
1, 3, 0, 0
1, 6, 1, 0, 0
1, 10, 5, 0, 0, 0
1, 15, 15, 1, 0, 0, 0
1, 21, 35, 7, 0, 0, 0, 0
1, 28, 70, 28, 1, 0, 0, 0, 0
		

Crossrefs

Column k = 1 is A000217.
Column k = 2 is A000332.
Row sums are A011782 (or A000079 shifted right).
Removing all zeros gives A034839 (requiring n-1 A034867).
Last nonzero term in each row appears to be A093178, requiring n-1 A124625.
Reversing rows gives A098158, without zeros A109446.
Without the k = 0 column we get A210039.
Row maxima appear to be A214282.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.
A268193 counts integer partitions by number of maximal runs, for anti-runs A384881.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n-1]],Length[Split[#,#2==#1+1&]]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Jul 08 2025 *)

Formula

T(n,k) = binomial(n,2k).
G.f.: (1-x)/((1-x)^2-y*x^2).
T(n,k)= Sum_{j, j>=0} T(n-1-j,k-1)*j with T(n,0)=1 and T(n,k)= 0 if k<0 or if n
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k) for n>1, T(0,0) = T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Nov 10 2013

A165241 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 9, 6, 1, 8, 24, 25, 10, 1, 16, 60, 85, 55, 15, 1, 32, 144, 258, 231, 105, 21, 1, 64, 336, 728, 833, 532, 182, 28, 1, 128, 768, 1952, 2720, 2241, 1092, 294, 36, 1, 256, 1728, 5040, 8280, 8361, 5301, 2058, 450, 45, 1
Offset: 0

Author

Philippe Deléham, Sep 09 2009

Keywords

Comments

Rows sums: A006012; Diagonal sums: A052960.
The sums of each column of A117317 with its subsequent column, treated as a lower triangular matrix with an initial null column attached, or, equivalently, the products of the row polynomials p(n,y) of A117317 with (1+y) with the initial first row below added to the final result. The reversal of A117317 is A056242 with several combinatorial interpretations. - Tom Copeland, Jan 08 2017

Examples

			Triangle begins:
  1;
  1,  1;
  2,  3,  1;
  4,  9,  6,  1;
  8, 24, 25, 10,  1; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. Sum_{k=0..n} T(n,k)*x^(n-k) = A123335(n), A000007(n), A000012(n), A006012(n), A084120(n), A090965(n), A165225(n), A165229(n), A165230(n), A165231(n), A165232(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively.
G.f.: (1-(1+y)*x)/(1-2(1+y)*x+(y+y^2)*x^2). - Philippe Deléham, Dec 19 2011
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if nPhilippe Deléham, Dec 19 2011

Extensions

O.g.f. corrected by Tom Copeland, Jan 15 2017

A289414 a(n) = ((10-sqrt(10))^n + (10+sqrt(10))^n) / 2.

Original entry on oeis.org

1, 10, 110, 1300, 16100, 205000, 2651000, 34570000, 452810000, 5944900000, 78145100000, 1027861000000, 13524161000000, 177975730000000, 2342340110000000, 30828986500000000, 405769120100000000, 5340773617000000000, 70296251531000000000, 925255405090000000000
Offset: 0

Author

Colin Barker, Jul 06 2017

Keywords

Programs

  • Maple
    a:= n-> (<<0|1>, <-90|20>>^n. <<1,10>>)[1,1]:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 06 2017
  • Mathematica
    LinearRecurrence[{20, -90}, {1, 10}, 20] (* Jean-François Alcover, Jan 29 2025 *)
  • PARI
    Vec((1 - 10*x) / (1 - 20*x + 90*x^2) + O(x^25))

Formula

G.f.: (1 - 10*x) / (1 - 20*x + 90*x^2).
a(n) = 20*a(n-1) - 90*a(n-2) for n>1.

A289415 a(n) = ((11-sqrt(11))^n + (11+sqrt(11))^n) / 2.

Original entry on oeis.org

1, 11, 132, 1694, 22748, 314116, 4408272, 62429224, 888533008, 12680511536, 181232622912, 2592261435104, 37094163051968, 530922829281856, 7599944308484352, 108797263565651584, 1557545924511056128, 22298311347021560576, 319232797938258158592
Offset: 0

Author

Colin Barker, Jul 06 2017

Keywords

Programs

  • Maple
    a:= n-> (<<0|1>, <-110|22>>^n. <<1,11>>)[1,1]:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 06 2017
  • PARI
    Vec((1 - 11*x) / (1 - 22*x + 110*x^2) + O(x^25))

Formula

G.f.: (1 - 11*x) / (1 - 22*x + 110*x^2).
a(n) = 22*a(n-1) - 110*a(n-2) for n>1.

A084157 a(n) = 8*a(n-1) - 16*a(n-2) + 12*a(n-4) with a(0)=0, a(1)=1, a(2)=4, a(3)=22.

Original entry on oeis.org

0, 1, 4, 22, 112, 556, 2704, 13000, 62080, 295312, 1401664, 6644320, 31472896, 149017792, 705395968, 3338614912, 15800258560, 74772443392, 353840161792, 1674425579008, 7923565146112, 37494981225472, 177428889407488
Offset: 0

Author

Paul Barry, May 16 2003

Keywords

Comments

Binomial transform of A084156.

Crossrefs

Programs

  • Magma
    I:=[0,1,4,22]; [n le 4 select I[n] else 8*Self(n-1) -16*Self(n-2) +12*Self(n-4): n in [1..41]]; // G. C. Greubel, Oct 11 2022
    
  • Mathematica
    LinearRecurrence[{8,-16,0,12},{0,1,4,22},30] (* Harvey P. Dale, Feb 19 2017 *)
  • SageMath
    A083881 = BinaryRecurrenceSequence(6,-6,1,3)
    A026150 = BinaryRecurrenceSequence(2,2,1,1)
    def A084157(n): return (A083881(n) - A026150(n))/2
    [A084157(n) for n in range(41)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = (A083881(n) - A026150(n))/2.
a(n) = 8*a(n-1) - 16*a(n-2) + 12*a(n-4).
a(n) = ((3+sqrt(3))^n + (3-sqrt(3))^n - (1+sqrt(3))^n - (1-sqrt(3))^n)/4.
G.f.: x*(1-4*x+6*x^2)/((1-2*x-2*x^2)*(1-6*x+6*x^2)).
E.g.f.: exp(2*x)*sinh(x)*cosh(sqrt(3)*x).
From G. C. Greubel, Oct 11 2022: (Start)
a(2*n) = A003462(n)*A026150(2*n) = A003462(n)*A080040(2*n)/2.
a(2*n+1) = (1/2)*(3^(n+1)*A002605(2*n+1) - A026150(2*n+1)). (End)

A163470 a(n) = 8*a(n-1) - 13*a(n-2) for n > 1; a(0) = 3, a(1) = 15.

Original entry on oeis.org

3, 15, 81, 453, 2571, 14679, 84009, 481245, 2757843, 15806559, 90600513, 519318837, 2976744027, 17062807335, 97804786329, 560621795277, 3213512139939, 18420013780911, 105584452428081, 605215440272805
Offset: 0

Author

Klaus Brockhaus, Aug 11 2009

Keywords

Comments

Binomial transform of A083881 without initial 1. Inverse binomial transform of A163471.

Crossrefs

Programs

  • Magma
    [ n le 2 select 12*n-9 else 8*Self(n-1)-13*Self(n-2): n in [1..22] ];
    
  • Mathematica
    LinearRecurrence[{8, -13}, {3, 15}, 50] (* G. C. Greubel, Jul 25 2017 *)
  • PARI
    x='x+O('x^50); Vec((3-9*x)/(1-8*x+13*x^2)) \\ G. C. Greubel, Jul 25 2017

Formula

a(n) = ((3+sqrt(3))*(4+sqrt(3))^n + (3-sqrt(3))*(4-sqrt(3))^n)/2.
G.f.: (3-9*x)/(1-8*x+13*x^2).
a(n) = 3*A162557(n). - R. J. Mathar, Jun 14 2016
E.g.f.: (1/2)*exp(4*x)*(6*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x)). - G. C. Greubel, Jul 25 2017

A361432 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 20, 8, 0, 1, 5, 20, 54, 68, 16, 0, 1, 6, 30, 112, 252, 232, 32, 0, 1, 7, 42, 200, 656, 1188, 792, 64, 0, 1, 8, 56, 324, 1400, 3904, 5616, 2704, 128, 0, 1, 9, 72, 490, 2628, 10000, 23360, 26568, 9232, 256, 0
Offset: 0

Author

Seiichi Manyama, Mar 11 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  0,  1,   2,    3,    4,     5, ...
  0,  2,   6,   12,   20,    30, ...
  0,  4,  20,   54,  112,   200, ...
  0,  8,  68,  252,  656,  1400, ...
  0, 16, 232, 1188, 3904, 10000, ...
		

Crossrefs

Main diagonal gives A084062.

Programs

  • PARI
    T(n,k) = sum(j=0, n\2, k^(n-j)*binomial(n, 2*j));
    
  • PARI
    T(n, k) = round(((k+sqrt(k))^n+(k-sqrt(k))^n))/2;

Formula

T(0,k) = 1, T(1,k) = k; T(n,k) = 2 * k * T(n-1,k) - (k-1) * k * T(n-2,k).
T(n,k) = ((k + sqrt(k))^n + (k - sqrt(k))^n)/2.
G.f. of column k: (1 - k * x)/(1 - 2 * k * x + (k-1) * k * x^2).
E.g.f. of column k: exp(k * x) * cosh(sqrt(k) * x).
Showing 1-10 of 11 results. Next