cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006129 a(0), a(1), a(2), ... satisfy Sum_{k=0..n} a(k)*binomial(n,k) = 2^binomial(n,2), for n >= 0.

Original entry on oeis.org

1, 0, 1, 4, 41, 768, 27449, 1887284, 252522481, 66376424160, 34509011894545, 35645504882731588, 73356937912127722841, 301275024444053951967648, 2471655539737552842139838345, 40527712706903544101000417059892, 1328579255614092968399503598175745633
Offset: 0

Views

Author

Keywords

Comments

Also labeled graphs on n unisolated nodes (inverse binomial transform of A006125). - Vladeta Jovovic, Apr 09 2000
Also the number of edge covers of the complete graph K_n. - Eric W. Weisstein, Mar 30 2017

Examples

			2^binomial(n,2) = 1 + binomial(n,2) + 4*binomial(n,3) + 41*binomial(n,4) + 768*binomial(n,5) + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A054548.
Cf. A322661 (if loops allowed), A086193 (directed edges), A002494 (unlabeled).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          2^binomial(n, 2) - add(a(k)*binomial(n,k), k=0..n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2012
  • Mathematica
    a = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, 20}]; Range[0, 20]! CoefficientList[Series[a/Exp[x], {x, 0, 20}], x] (* Geoffrey Critzer, Oct 21 2011 *)
    Table[Sum[(-1)^(n - k) Binomial[n, k] 2^Binomial[k, 2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2015 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n,(-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)), ", ")) \\ G. C. Greubel, Mar 30 2017
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def a(n): return 1 if n==0 else 2**binomial(n, 2) - sum(a(k)*binomial(n, k) for k in range(n))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 12 2017

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2).
E.g.f.: A(x)/exp(x) where A(x) = Sum_{n>=0} 2^C(n,2) x^n/n!. - Geoffrey Critzer, Oct 21 2011
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, May 04 2015

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A048291 Number of {0,1} n X n matrices with no zero rows or columns.

Original entry on oeis.org

1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Number of relations on n labeled points such that for every point x there exists y and z such that xRy and zRx.
Also the number of edge covers in the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017
Counts labeled digraphs (loops allowed, no multiarcs) on n nodes where each indegree and each outdegree is >= 1. The corresponding sequence for unlabeled digraphs (1, 5, 55, 1918,... for n >= 1) seems not to be in the OEIS. - R. J. Mathar, Nov 21 2023
These relations form a subsemigroup of the semigroup of all binary relations on [n]. The zero element is the universal relation (all 1's matrix). See Schwarz link. - Geoffrey Critzer, Jan 15 2024

Examples

			a(2) = 7:  |01|  |01|  |10|  |10|  |11|  |11|  |11|
           |10|  |11|  |01|  |11|  |01|  |10|  |11|.
		

References

  • Brendan McKay, Posting to sci.math.research, Jun 14 1999.

Crossrefs

Cf. A055601, A055599, A104601, A086193 (traceless, no loops), A086206, A322661 (adj. matr. undirected edges).
Diagonal of A183109.

Programs

  • Maple
    seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
    
  • Python
    import math
    f = math.factorial
    def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017

Formula

a(n) = Sum_{s=0..n} binomial(n, s)*(-1)^s*2^((n-s)*n)*(1-2^(-n+s))^n.
From Vladeta Jovovic, Feb 23 2008: (Start)
E.g.f.: Sum_{n>=0} (2^n-1)^n*exp((1-2^n)*x)*x^n/n!.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j)*binomial(n,i)*binomial(n,j)*2^(i*j). (End)
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jul 02 2014
a(n) = Sum_{s=0..n-1} binomial(n,s)*(-1)^s*A092477(n,n-s), n > 0. - R. J. Mathar, Nov 18 2023

A086206 Number of n X n matrices with entries in {0,1} with no zero row and with zero main diagonal.

Original entry on oeis.org

0, 1, 27, 2401, 759375, 887503681, 3938980639167, 67675234241018881, 4558916353692287109375, 1213972926354344043087129601, 1284197945649659948122178573052927, 5412701932445852698371002894178179850241, 91054366938067173656011584805755385081787109375
Offset: 1

Views

Author

Vladeta Jovovic, Aug 27 2003

Keywords

Comments

Equivalently a(n) is the number of labeled digraphs on [n] with no out-nodes. Cf. A362013. - Geoffrey Critzer, Apr 13 2023

Crossrefs

Programs

Formula

a(n) = (2^(n-1)-1)^n = Sum_{k=0..n} (-1)^k*binomial(n, k)*2^((n-k)*(n-1)).
a(n) = A092477(n, n-1).
Sum_{n>=0} a(n)*x^n/A011266(n) = (Sum_{n>=0} (-x)^n/A011266(n))*(Sum_{n>=0} 2^(n(n-1))*x^n/A011266(n)). - Geoffrey Critzer, Apr 13 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 05 2020

A086366 Number of labeled n-node digraphs in which every node belongs to a directed cycle.

Original entry on oeis.org

1, 0, 1, 18, 1699, 587940, 750744901, 3556390155318, 63740128872703879, 4405426607409460017480, 1190852520892329350092354441, 1270598627613805616203391468226138, 5381238039128882594932248239301142751179, 90766634183072089515270648224715368261615375340
Offset: 0

Views

Author

Keywords

Comments

These are the directed graphs whose strong components exclude a single vertex. - Andrew Howroyd, Jan 15 2022

Crossrefs

Column k=0 of A361592.
The unlabeled version is A361586.

Programs

  • PARI
    G(p)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k/2^(k*(k-1)/2), O(x^n)))}
    U(p)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*2^(k*(k-1)/2), O(x^n)))}
    DigraphEgf(n)={sum(k=0, n, 2^(k*(k-1))*x^k/k!, O(x*x^n) )}
    seq(n)={Vec(serlaplace(U(1/G(exp(x+log(U(1/G(DigraphEgf(n)))))))))} \\ Andrew Howroyd, Jan 15 2022

Extensions

a(0)=1 prepended and terms a(12) and beyond from Andrew Howroyd, Jan 15 2022

A121933 Number of labeled digraphs with n arcs for which every vertex has indegree at least one and outdegree at least one.

Original entry on oeis.org

1, 0, 1, 2, 18, 158, 1788, 23930, 370886, 6527064, 128542420, 2800362536, 66858556196, 1735834171276, 48689118113374, 1467253017578672, 47275138863637080, 1621757692715997136, 59013695834307968254, 2270400832166224741596, 92078072790064946096284
Offset: 0

Views

Author

Vladeta Jovovic, Sep 02 2006

Keywords

Crossrefs

Cf. A121252, A086193 (by # of nodes), A367500 (unlabeled version).

Programs

  • Maple
    n:=20: t:=taylor(sum(sum((-1)^(m-k)*binomial(m,k)*((1+x)^(k-1)-1)^k*((1+x)^k-1)^(m-k),k=0..m),m=0..n),x,n+1): seq(coeff(t,x,m),m=0..n); # Nathaniel Johnston, Apr 28 2011
  • Mathematica
    Flatten[{1,Rest[CoefficientList[Series[Sum[Sum[(-1)^(n-k)*Binomial[n,k]*((1+x)^(k-1)-1)^k*((1+x)^k-1)^(n-k),{k,0,n}],{n,1,20}],{x,0,20}],x]]}] (* Vaclav Kotesovec, May 07 2014 *)

Formula

G.f.: Sum(Sum((-1)^(n-k)*binomial(n,k)*((1+x)^(k-1)-1)^k*((1+x)^k-1)^(n-k),k=0..n),n=0..infinity).
a(n) ~ c * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.0722246614111436... . - Vaclav Kotesovec, May 07 2014
In closed form, c = 1/(sqrt(Pi*(1-log(2))) * log(2) * 2^(4+log(2)/2)). - Vaclav Kotesovec, May 04 2015

A367500 The number of digraphs on n unlabeled nodes with each indegree >=1 and each outdegree >=1.

Original entry on oeis.org

1, 0, 1, 5, 90, 5332, 1076904, 713634480, 1586714659885, 12154215627095823, 328282817968663707661, 31834558934274542784372501, 11234635799120735533158176241587, 14576389568173850099660541344975456791, 70075904848498231395100110985113641934719377
Offset: 0

Views

Author

R. J. Mathar, Nov 20 2023

Keywords

Comments

Digraphs counted here must be loopless, but not necessarily connected.
The definition is not strictly saying that there is no (global) source or sink, because the graphs are counted without considering (strong or weak) connectivity.
(The weakly connected digraphs of this type start 1,0,1,5,89,5327,...)

Examples

			From _Andrew Howroyd_, Jan 02 2024: (Start)
Example of a digraph counted by this sequence but not by A361586:
   o <---> o ----> o ----> o <---> o
In the above example, the 3rd vertex has both an in arc and an out arc, but is not part of any directed cycle. (End)
		

Crossrefs

Cf. A121933 (labeled version), A086193 (labeled digraphs), A002494 (undirected graphs), A361586 (all vertices in at least one directed cycle).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
    a(n) = {if(n==0, 1, sum(k=1, n, my(s=0, m=n-k); forpart(p=k, s += permcount(p) * prod(i=1, #p, 2^(K(p,p[i])-1)-1) * polcoef(exp(sum(t=1, m, (1-2^K(p, t))/t*x^t) + O(x*x^m)), m)); s/k!))} \\ Andrew Howroyd, Jan 02 2024

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 02 2024

A361210 Number of labeled digraphs on [n] with exactly 1 in-node and exactly 1 out-node.

Original entry on oeis.org

0, 1, 2, 15, 588, 83295, 40993230, 70413420511, 433343743592312, 9825711749274316671, 840137012096473747415610, 275596225117501271622460109871, 351011149451321734143551287903432452, 1749719217881846572487198585072701742763487, 34317835907818751756576624929762210160396817182918
Offset: 0

Views

Author

Geoffrey Critzer, Apr 09 2023

Keywords

Comments

Here, an in-node is a node whose outdegree is zero. An out-node is a node whose in-degree is zero. The in-node is not necessarily distinct from the out-node.

Crossrefs

Cf. A086193 (no out-nodes nor in-nodes).

Programs

  • Mathematica
    nn = 14; B[n_] := n! 2^Binomial[n, 2] ; e[z_] := Sum[z^n/B[n], {n, 0, nn}];
    g[z_] := Sum[2^(n (n - 1)) z^n/B[n], {n, 0, nn}];egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /. Table[z^i -> z^i*2^Binomial[i, 2], {i, 0, nn}];Table[n!, {n, 0, nn}] Map[Coefficient[#, u v] &, CoefficientList[Series[Exp[(u - 1) ( v - 1) z] egf[e[(u - 1) z] g[z] e[(v - 1) z]], {z, 0, nn}], z]]
Showing 1-7 of 7 results.