A006129
a(0), a(1), a(2), ... satisfy Sum_{k=0..n} a(k)*binomial(n,k) = 2^binomial(n,2), for n >= 0.
Original entry on oeis.org
1, 0, 1, 4, 41, 768, 27449, 1887284, 252522481, 66376424160, 34509011894545, 35645504882731588, 73356937912127722841, 301275024444053951967648, 2471655539737552842139838345, 40527712706903544101000417059892, 1328579255614092968399503598175745633
Offset: 0
2^binomial(n,2) = 1 + binomial(n,2) + 4*binomial(n,3) + 41*binomial(n,4) + 768*binomial(n,5) + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- A. N. Bhavale, B. N. Waphare, Basic retracts and counting of lattices, Australasian J. of Combinatorics (2020) Vol. 78, No. 1, 73-99.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- N. J. A. Sloane, Transforms
- R. Tauraso, Edge cover time for regular graphs, JIS 11 (2008) 08.4.4.
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Edge Cover
-
a:= proc(n) option remember; `if`(n=0, 1,
2^binomial(n, 2) - add(a(k)*binomial(n,k), k=0..n-1))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 26 2012
-
a = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, 20}]; Range[0, 20]! CoefficientList[Series[a/Exp[x], {x, 0, 20}], x] (* Geoffrey Critzer, Oct 21 2011 *)
Table[Sum[(-1)^(n - k) Binomial[n, k] 2^Binomial[k, 2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2015 *)
-
for(n=0,25, print1(sum(k=0,n,(-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)), ", ")) \\ G. C. Greubel, Mar 30 2017
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def a(n): return 1 if n==0 else 2**binomial(n, 2) - sum(a(k)*binomial(n, k) for k in range(n))
print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 12 2017
A048291
Number of {0,1} n X n matrices with no zero rows or columns.
Original entry on oeis.org
1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
Offset: 0
Joe Keane (jgk(AT)jgk.org)
a(2) = 7: |01| |01| |10| |10| |11| |11| |11|
|10| |11| |01| |11| |01| |10| |11|.
- Brendan McKay, Posting to sci.math.research, Jun 14 1999.
- T. D. Noe, Table of n, a(n) for n = 0..32
- H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
- David Dolžan and Gabriel Verret, The automorphism group of the zero-divisor digraph of matrices over an antiring, arXiv:1908.04614 [math.AC], 2019.
- R. J. Mathar, The number of nXm matrices with at most k 1's in each row or column, (2014).
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Stefan Schwarz, The semigroup of fully indecomposable relations and Hall relations, Czechoslovak Mathematical Journal, 23 (1973), 151-163.
- R. Tauraso, Edge cover time for regular graphs, JIS 11 (2008) 08.4.4.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Edge Cover.
-
seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
-
Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
-
a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
-
import math
f = math.factorial
def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017
A086206
Number of n X n matrices with entries in {0,1} with no zero row and with zero main diagonal.
Original entry on oeis.org
0, 1, 27, 2401, 759375, 887503681, 3938980639167, 67675234241018881, 4558916353692287109375, 1213972926354344043087129601, 1284197945649659948122178573052927, 5412701932445852698371002894178179850241, 91054366938067173656011584805755385081787109375
Offset: 1
A086366
Number of labeled n-node digraphs in which every node belongs to a directed cycle.
Original entry on oeis.org
1, 0, 1, 18, 1699, 587940, 750744901, 3556390155318, 63740128872703879, 4405426607409460017480, 1190852520892329350092354441, 1270598627613805616203391468226138, 5381238039128882594932248239301142751179, 90766634183072089515270648224715368261615375340
Offset: 0
-
G(p)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k/2^(k*(k-1)/2), O(x^n)))}
U(p)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*2^(k*(k-1)/2), O(x^n)))}
DigraphEgf(n)={sum(k=0, n, 2^(k*(k-1))*x^k/k!, O(x*x^n) )}
seq(n)={Vec(serlaplace(U(1/G(exp(x+log(U(1/G(DigraphEgf(n)))))))))} \\ Andrew Howroyd, Jan 15 2022
a(0)=1 prepended and terms a(12) and beyond from
Andrew Howroyd, Jan 15 2022
A121933
Number of labeled digraphs with n arcs for which every vertex has indegree at least one and outdegree at least one.
Original entry on oeis.org
1, 0, 1, 2, 18, 158, 1788, 23930, 370886, 6527064, 128542420, 2800362536, 66858556196, 1735834171276, 48689118113374, 1467253017578672, 47275138863637080, 1621757692715997136, 59013695834307968254, 2270400832166224741596, 92078072790064946096284
Offset: 0
-
n:=20: t:=taylor(sum(sum((-1)^(m-k)*binomial(m,k)*((1+x)^(k-1)-1)^k*((1+x)^k-1)^(m-k),k=0..m),m=0..n),x,n+1): seq(coeff(t,x,m),m=0..n); # Nathaniel Johnston, Apr 28 2011
-
Flatten[{1,Rest[CoefficientList[Series[Sum[Sum[(-1)^(n-k)*Binomial[n,k]*((1+x)^(k-1)-1)^k*((1+x)^k-1)^(n-k),{k,0,n}],{n,1,20}],{x,0,20}],x]]}] (* Vaclav Kotesovec, May 07 2014 *)
A367500
The number of digraphs on n unlabeled nodes with each indegree >=1 and each outdegree >=1.
Original entry on oeis.org
1, 0, 1, 5, 90, 5332, 1076904, 713634480, 1586714659885, 12154215627095823, 328282817968663707661, 31834558934274542784372501, 11234635799120735533158176241587, 14576389568173850099660541344975456791, 70075904848498231395100110985113641934719377
Offset: 0
From _Andrew Howroyd_, Jan 02 2024: (Start)
Example of a digraph counted by this sequence but not by A361586:
o <---> o ----> o ----> o <---> o
In the above example, the 3rd vertex has both an in arc and an out arc, but is not part of any directed cycle. (End)
Cf.
A121933 (labeled version),
A086193 (labeled digraphs),
A002494 (undirected graphs),
A361586 (all vertices in at least one directed cycle).
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
a(n) = {if(n==0, 1, sum(k=1, n, my(s=0, m=n-k); forpart(p=k, s += permcount(p) * prod(i=1, #p, 2^(K(p,p[i])-1)-1) * polcoef(exp(sum(t=1, m, (1-2^K(p, t))/t*x^t) + O(x*x^m)), m)); s/k!))} \\ Andrew Howroyd, Jan 02 2024
A361210
Number of labeled digraphs on [n] with exactly 1 in-node and exactly 1 out-node.
Original entry on oeis.org
0, 1, 2, 15, 588, 83295, 40993230, 70413420511, 433343743592312, 9825711749274316671, 840137012096473747415610, 275596225117501271622460109871, 351011149451321734143551287903432452, 1749719217881846572487198585072701742763487, 34317835907818751756576624929762210160396817182918
Offset: 0
Cf.
A086193 (no out-nodes nor in-nodes).
-
nn = 14; B[n_] := n! 2^Binomial[n, 2] ; e[z_] := Sum[z^n/B[n], {n, 0, nn}];
g[z_] := Sum[2^(n (n - 1)) z^n/B[n], {n, 0, nn}];egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /. Table[z^i -> z^i*2^Binomial[i, 2], {i, 0, nn}];Table[n!, {n, 0, nn}] Map[Coefficient[#, u v] &, CoefficientList[Series[Exp[(u - 1) ( v - 1) z] egf[e[(u - 1) z] g[z] e[(v - 1) z]], {z, 0, nn}], z]]
Showing 1-7 of 7 results.
Comments