A086461
Symmetric version of square array A086460.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 6, 6, 4, 1, 1, 5, 8, 9, 8, 5, 1, 1, 6, 10, 12, 12, 10, 6, 1, 1, 7, 12, 15, 16, 15, 12, 7, 1, 1, 8, 14, 18, 20, 20, 18, 14, 8, 1, 1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 1, 1, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 1, 1, 11, 20, 27, 32, 35, 36
Offset: 0
Rows begin
1 1 1 1 1 ...
1 1 2 3 4 ...
1 2 4 6 8 ...
1 3 6 9 12 ...
1 4 8 12 16 ...
As a triangle:
{1},
{1, 1},
{1, 1, 1},
{1, 2, 2, 1},
{1, 3, 4, 3, 1},
{1, 4, 6, 6, 4, 1},
{1, 5, 8, 9, 8, 5, 1},
{1, 6, 10, 12, 12, 10, 6, 1},
{1, 7, 12, 15, 16, 15, 12, 7, 1},
{1, 8, 14, 18, 20, 20, 18, 14, 8, 1},
{1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 1}
-
t[n_, m_] = If[ n == 0 || n == m || m == 0, 1, n - m]*If[n == m || n == 0 || m == 0, 1, m]; Table[t[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Roger L. Bagula, Sep 06 2008 *)
A050407
a(n) = n*(n^2 - 6*n + 11)/6.
Original entry on oeis.org
0, 1, 1, 1, 2, 5, 11, 21, 36, 57, 85, 121, 166, 221, 287, 365, 456, 561, 681, 817, 970, 1141, 1331, 1541, 1772, 2025, 2301, 2601, 2926, 3277, 3655, 4061, 4496, 4961, 5457, 5985, 6546, 7141, 7771, 8437, 9140, 9881, 10661, 11481, 12342, 13245, 14191
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kassie Archer and Aaron Geary, Descents in powers of permutations, arXiv:2406.09369 [math.CO], 2024.
- Colin Defant, Motzkin intervals and valid hook configurations, arXiv preprint arXiv:1904.10451 [math.CO], 2019.
- Robert DiSario, Problem 10931, Amer. Math. Monthly, 109 (No. 3, 2002), 298.
- J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
- Nurul Hilda Syani Putri, Mashadi, and Sri Gemawati, Sequences from heptagonal pyramid corners of integer, International Mathematical Forum, Vol. 13, 2018, no. 4, 193-200.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 25 2012
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Apart from initial terms, one more than the tetrahedral numbers
A000292.
-
List([0..50], n-> n*(n^2-6*n+11)/6); # G. C. Greubel, Oct 30 2019
-
a050407 n = n * (n ^ 2 - 6 * n + 11) `div` 6
-- Reinhard Zumkeller, Oct 17 2014
-
I:=[0, 1, 1, 1]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 22 2012
-
seq(binomial(n-1, 3) + 1, n = 0..46); # Zerinvary Lajos, Jul 24 2006
-
Table[n*(n^2-6*n+11)/6, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)
LinearRecurrence[{4,-6,4,-1},{0,1,1,1},50] (* Vincenzo Librandi, Jun 22 2012 *)
Join[{0,1,1},Nest[Accumulate,Range[0,50],2]+1] (* Harvey P. Dale, Sep 23 2017 *)
-
a(n)=n*(n^2-6*n+11)/6 \\ Charles R Greathouse IV, Oct 07 2015
-
for n in range(0,50): print(n*(n**2 - 6*n + 11)/6, end=', ') # Stefano Spezia, Jan 05 2019
-
[n*(n^2-6*n+11)/6 for n in (0..50)] # G. C. Greubel, Oct 30 2019
Showing 1-2 of 2 results.
Comments