cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A088725 Numbers having no divisors d>1 such that also d+1 is a divisor.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2003

Keywords

Comments

Complement of A088723.
Union of A132895 and A005408, the odd numbers. - Ray Chandler, May 29 2008
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 9, 79, 778, 7782, 77813, 778055, 7780548, 77805234, 778052138, 7780519314, ... . Apparently, the asymptotic density of this sequence exists and equals 0.77805... . - Amiram Eldar, Jun 14 2022

Examples

			From _Gus Wiseman_, Oct 16 2019: (Start)
The sequence of terms together with their divisors > 1 begins:
   1: {}
   2: {2}
   3: {3}
   4: {2,4}
   5: {5}
   7: {7}
   8: {2,4,8}
   9: {3,9}
  10: {2,5,10}
  11: {11}
  13: {13}
  14: {2,7,14}
  15: {3,5,15}
  16: {2,4,8,16}
  17: {17}
  19: {19}
  21: {3,7,21}
  22: {2,11,22}
  23: {23}
  25: {5,25}
(End)
		

Crossrefs

Positions of 0's and 1's in A129308.
Positions of 0's and 1's in A328457 (also).
Numbers whose divisors (including 1) have no non-singleton runs are A005408.
The number of runs of divisors of n is A137921(n).
The longest run of divisors of n has length A055874(n).

Programs

  • Mathematica
    Select[Range[100],FreeQ[Differences[Rest[Divisors[#]]],1]&] (* Harvey P. Dale, Sep 16 2017 *)
  • PARI
    isok(n) = {my(d=setminus(divisors(n), [1])); #setintersect(d, apply(x->x+1, d)) == 0;} \\ Michel Marcus, Oct 28 2019

Formula

A088722(a(n)) = 0.

Extensions

Extended by Ray Chandler, May 29 2008

A088722 Number of divisors d>1 of n such that d+1 also divides n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2003

Keywords

Comments

Also, number of partitions of n into two distinct parts (s,t), sWesley Ivan Hurt, Jan 16 2022

Examples

			n=144: divisors(144) = {1,2,3,4,6,8,9,12,16,18,24,36,48,72,144}, there are a(144) = 3 divisors d>1 such that also d+1 divides 144: (2,3), (3,4) and (8,9).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[# > 1, Divisible[n, # + 1]] &], {n, 105}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A088722(n) = sumdiv(n,d,(d>1)&&!(n%(d+1))); \\ Antti Karttunen, Jul 12 2017
    
  • PARI
    first(n) = my(v = vector(n),k); for(i=2,sqrtint(n),k=i*(i+1); for(j=1, n\k, v[j*k]++)); v \\ David A. Corneth, Jul 12 2017

Formula

a(A088723(n)) > 0, a(A088724(n)) = 1, a(A088725(n)) = 0.
a(A088726(n)) = n, a(k) <> n, for n < A088726(n).
a(2n+1) = 0. - Ray Chandler, May 29 2008
a(n) = Sum_{d|n, (d+1)|n, d>1} 1. - Wesley Ivan Hurt, Jan 16 2022
From Amiram Eldar, Dec 31 2023: (Start)
a(n) = A129308(n) - A059841(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2. (End)

Extensions

Extended by Ray Chandler, May 29 2008

A088723 Numbers k with at least one divisor d>1 such that d+1 also divides k.

Original entry on oeis.org

6, 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 90, 96, 100, 102, 108, 110, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 180, 182, 186, 192, 198, 200, 204, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2003

Keywords

Comments

Complement of A088725.
Complement of A132895 relative to A005843, the even numbers. - Ray Chandler, May 29 2008
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 1, 21, 222, 2218, 22187, 221945, 2219452, 22194766, 221947862, 2219480686, ... . Apparently, the asymptotic density of this sequence exists and equals 0.22194... . - Amiram Eldar, Apr 20 2025

Crossrefs

Cf. A027750, A008588 (subsequence).

Programs

  • Haskell
    a088723 n = a088723_list !! (n-1)
    a088723_list = filter f [2..] where
       f x = 1 `elem` (zipWith (-) (tail divs) divs)
             where divs = tail $ a027750_row x
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Mathematica
    Select[Range[300],MemberQ[Differences[Select[Divisors[#], #>1&]], 1]&]  (* Harvey P. Dale, Apr 03 2011 *)
  • PARI
    isok(k) = if(k%2, 0, if(!(k%3), 1, fordiv(k, d, if(d > 1 && !(k % (d+1)), return(1))); 0)); \\ Amiram Eldar, Apr 20 2025

Formula

A088722(a(n)) > 0.

Extensions

Extended by Ray Chandler, May 29 2008

A130317 Smallest number having exactly n triangular divisors.

Original entry on oeis.org

1, 3, 6, 36, 30, 90, 180, 210, 420, 630, 1890, 1260, 2520, 6930, 18480, 20790, 13860, 27720, 41580, 83160, 138600, 245700, 235620, 180180, 556920, 360360, 540540, 1670760, 1081080, 1413720, 2702700, 2162160, 6486480, 3063060, 8288280
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2007

Keywords

Comments

2*a(n) is smallest number having exactly n oblong divisors.
A007862(a(n)) = n and A007862(m) <> n for m < a(n).

Examples

			a(3)=6: A007862(6)=#{1,2*(2+1)/2,3*(3+1)/2}=3;
a(4)=36: A007862(36)=#{1,2*(2+1)/2,3*(3+1)/2,8*(8+1)/2}=4;
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, ispolygonal(d,3)) != n, k++); k; \\ Michel Marcus, Jan 14 2022

Formula

a(n) = A088726(n-1)/2 for n>1. - Ray Chandler, Jun 24 2008

Extensions

Extended by Ray Chandler, Jun 24 2008

A088724 Numbers having exactly one divisor d>1 such that also d+1 is a divisor.

Original entry on oeis.org

6, 18, 20, 40, 54, 56, 66, 78, 80, 100, 102, 110, 112, 114, 138, 140, 160, 162, 174, 182, 186, 198, 200, 222, 224, 234, 246, 258, 260, 272, 282, 318, 320, 340, 354, 364, 366, 392, 400, 402, 414, 426, 438, 448, 460, 474, 486, 498, 500, 506, 520, 522, 534, 544
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2003

Keywords

Comments

Subsequence of A088723.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 1, 10, 100, 976, 9712, 97140, 971139, 9711054, 97109111, 971091745, ... . Apparently, the asymptotic density of this sequence exists and equals 0.097109... . - Amiram Eldar, Jul 09 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[600],Count[Differences[Rest[Divisors[#]]],1]==1&] (* Harvey P. Dale, Sep 05 2015 *)

Formula

A088722(a(n)) = 1.

Extensions

Extended by Ray Chandler, May 29 2008

A132895 Even numbers for which all divisors, with the exception of 1 and 2, are isolated. A positive divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.

Original entry on oeis.org

2, 4, 8, 10, 14, 16, 22, 26, 28, 32, 34, 38, 44, 46, 50, 52, 58, 62, 64, 68, 70, 74, 76, 82, 86, 88, 92, 94, 98, 104, 106, 116, 118, 122, 124, 128, 130, 134, 136, 142, 146, 148, 152, 154, 158, 164, 166, 170, 172, 176, 178, 184, 188, 190, 194, 196, 202, 206, 208, 212
Offset: 1

Views

Author

Emeric Deutsch, Oct 16 2007, Oct 19 2007

Keywords

Comments

Obviously, all divisors of an odd number are isolated.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 4, 29, 278, 2782, 27813, 278055, 2780548, 27805234, 278052138, 2780519314, ... . Apparently, the asymptotic density of this sequence exists and equals 0.27805... . - Amiram Eldar, Apr 20 2025

Examples

			28 is a term of the sequence because its divisors are 1, 2, 4, 7, 14, 28 and only 1 and 2 are non-isolated.
30 does not belong to the sequence because its divisors are 1, 2, 3, 4, 6, 8, 12, 24 and 1, 2, 3, 4 are non-isolated.
		

Crossrefs

Programs

  • Maple
    with(numtheory): b:=proc(n) local div,ISO,i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1,div)=false and member(div[i]+1,div)=false then ISO:=`union`(ISO,{div[i]}) end if end do end proc: a:=proc(n) if nops(b(n))= tau(n)-2 then n else end if end proc: seq(a(n), n=4..200);
  • Mathematica
    Select[2*Range[120],Min[Differences[Rest[Divisors[#]]]]>1&] (* Harvey P. Dale, Jul 13 2022 *)
  • PARI
    isok(k) = if(k%2, 0, if(!(k%3), 0, fordiv(k, d, if(d > 1 && !(k % (d+1)), return(0))); 1)); \\ Amiram Eldar, Apr 20 2025
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A132895_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:all(d==1 or not is_square((d<<3)+1) for d in divisors(n>>1,generator=True)), count(max(startvalue+(startvalue&1),2),2))
    A132895_list = list(islice(A132895_gen(),40)) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = 2*A112886(n). - Ray Chandler, May 29 2008

Extensions

Corrected and extended by Ray Chandler, May 29 2008

A287142 Least k such that the number of pairs of consecutive divisors of k equals n.

Original entry on oeis.org

1, 2, 6, 12, 72, 60, 180, 360, 420, 840, 1260, 3780, 2520, 5040, 13860, 36960, 41580, 27720, 55440, 83160, 166320, 277200, 491400, 471240, 360360, 1113840, 720720, 1081080, 3341520, 2162160, 2827440, 5405400, 4324320, 12972960, 6126120, 16576560, 28274400
Offset: 0

Views

Author

Michel Lagneau, May 20 2017

Keywords

Comments

a(n) is even for n > 0.
We observe numbers of the decimal form (abcabc) = 360360, 720720 and numbers of the decimal form (abcabc0) = 1081080, 2162160, 5405400, 4324320, 6126120.
Observation and questions: many terms are products of powers of a contiguous set of the smallest primes. Many early terms of a(n) are in A002182; e.g., a(35) - A002182(44). The smallest exception outside of the empty product a(0) = 1 is a(22) = 491400 = 2^3 * 3^3 * 5^2 * 7 * 13. In other words, many terms have A006530(a(n)) < A053669(a(n)); a(22) is the smallest exception. Other exceptions include {471240, 1113840, 3341520, 2827440, 16576560, 28274400, ...}. A000720(A053669(a(22))) - A000720(A006530(a(22))) = 1, but the first instance of 2 for this function is a(35) = 16576560. This is evident by mapping A054841 across a(n). Are there a finite number of terms of a(n) that are also in A002182? Are there a finite number of terms of a(n) that have A006530(a(n)) < A053669(a(n)); are they becoming less frequent as n increases? - Michael De Vlieger, May 20 2017
In other words, a(n) is the least integer with exactly n divisors that are oblong (A002378). - Bernard Schott, Jul 30 2022

Examples

			a(3) = 12 because the divisors of 12 are {1, 2, 3, 4, 6, 12} with three pairs of consecutive divisors (1, 2), (2, 3) and (3, 4).
		

Crossrefs

Essentially the same as A088726.

Programs

  • Maple
    with(numtheory):
    for n from 0 to 60 do:
    ii:=0:
      for k from 1 to 10^8 while(ii=0) do:
        d0:=divisors(k):n0:=nops(d0):c0:=0:
          for i from 1 to n0-1 do:
            if d0[i+1]=d0[i]+1
             then
              c0:=c0+1:
              else
             fi:
           od:
           if c0=n
           then
         ii:=1:printf(ā€œ%d %d \nā€,n,k):
         else
         fi:
       od:
      od:
  • Mathematica
    Function[s, Function[t, ReplacePart[t, Map[#1 -> #2 & @@ # &, Transpose@{1 + Keys@ s, Values[s][[All, 1]]}]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Table[DivisorSum[n, 1 &, Divisible[n, # + 1] &], {n, 2 * 10^6}] (* Michael De Vlieger, May 20 2017, Version 10 *)
  • PARI
    isok(n,k) = {dk = divisors(k); ddk = vector(#dk-1, j, dk[j+1] - dk[j]); #select(x->x==1, ddk) == n;}
    a(n) = {my(k=1); while (!isok(n, k), k++); k;} \\ Michel Marcus, May 20 2017

Formula

a(n) = 2*A130317(n) for n >= 1. - Bernard Schott, Jul 30 2022

A195307 Where records occur in A129308 and also in A195155.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 360, 420, 840, 1260, 2520, 5040, 13860, 27720, 55440, 83160, 166320, 277200, 360360, 720720, 1081080, 2162160, 2827440, 4324320, 6126120, 12252240, 24504480, 36756720, 73513440, 147026880, 183783600, 232792560, 367567200, 465585120, 698377680
Offset: 1

Views

Author

Omar E. Pol, Oct 16 2011

Keywords

Comments

Observation: a(n) ending at 0, if 5 <= n <= 24 and possibly more.
From David A. Corneth, Apr 14 2021: (Start)
Conjecture: for each term k > 1 in the sequence there exists prime p such that k/p is in the sequence.
From the first 35 terms only a(23) = 2827440 is not in A025487.
In the list of conjectured terms, if actual terms <= 10^16 are 97-smooth and have the following property: a(n+1) = a(n) + k*gcd(a(n), a(n-1), ..., a(n-20)) setting a(n) = 1 for n < 1 then those terms are actual terms.
The conjectured terms are 41-smooth and satisfy a(n+1) = a(n) + k*gcd(a(n), a(n-1), ..., a(n-13)). (End)
From Bernard Schott, Jul 30 2022: (Start)
Equivalently, integers whose number of oblong divisors (A129308) sets a new record.
Corresponding records of number of oblong divisors are 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ... (End)

Examples

			a(4) = 12 is in the sequence because A129308(12) = 3 is larger than any earlier value in A129308. - _Bernard Schott_, Jul 30 2022
		

Crossrefs

Extensions

More terms a(6)-a(24) from Alois P. Heinz, Oct 16 2011
a(25)-a(35) from David A. Corneth, Apr 14 2021
Showing 1-8 of 8 results.