cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007862 Number of triangular numbers that divide n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 5, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 4, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 5, 1, 1, 3, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Also a(n) is the total number of ways to represent n+1 as a centered polygonal number of the form km(m+1)/2+1 for k>1. - Alexander Adamchuk, Apr 26 2007
Number of oblong numbers that divide 2n. - Ray Chandler, Jun 24 2008
The number of divisors d of 2n such that d+1 is also a divisor of 2n, see first formula. - Michel Marcus, Jun 18 2015
From Gus Wiseman, May 03 2019: (Start)
Also the number of integer partitions of n forming a finite arithmetic progression with offset 0, i.e. the differences are all equal (with the last part taken to be 0). The Heinz numbers of these partitions are given by A325327. For example, the a(1) = 1 through a(12) = 3 partitions are (A = 10, B = 11, C = 12):
1 2 3 4 5 6 7 8 9 A B C
21 42 63 4321 84
321 642
(End)

Crossrefs

Programs

  • Haskell
    a007862 = sum . map a010054 . a027750_row
    -- Reinhard Zumkeller, Jul 05 2014
    
  • Mathematica
    sup=90; TriN=Array[ (#+1)(#+2)/2&, Floor[ N[ Sqrt[ sup*2 ] ] ]-1 ]; Array[ Function[n, 1+Count[ Map[ Mod[ n, # ]&, TriN ], 0 ] ], sup ]
    Table[Count[Divisors[k], ?(IntegerQ[Sqrt[8 # + 1]] &)], {k, 105}] (* _Jayanta Basu, Aug 12 2013 *)
    Table[Length[Select[IntegerPartitions[n],SameQ@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    a(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ Michel Marcus, Jun 18 2015
    
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A007862(n): return sum(1 for a, b in pairwise(divisors(n<<1)) if a+1==b)  # Chai Wah Wu, Jun 09 2025

Formula

a(n) = Sum_{d|2*n,d+1|2*n} 1.
G.f.: Sum_{k>=1} x^A000217(k)/(1-x^A000217(k)). - Jon Perry, Jul 03 2004
a(A130317(n)) = n and a(m) <> n for m < A130317(n). - Reinhard Zumkeller, May 23 2007
a(n) = A129308(2n). - Ray Chandler, Jun 24 2008
a(n) = Sum_{k=1..A000005(n)} A010054(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Dec 31 2023

Extensions

Extended by Ray Chandler, Jun 24 2008

A088726 Smallest numbers having exactly n divisors d>1 such that also d+1 is a divisor.

Original entry on oeis.org

1, 6, 12, 72, 60, 180, 360, 420, 840, 1260, 3780, 2520, 5040, 13860, 36960, 41580, 27720, 55440, 83160, 166320, 277200, 491400, 471240, 360360, 1113840, 720720, 1081080, 3341520, 2162160, 2827440, 5405400, 4324320, 12972960, 6126120
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 12 2003

Keywords

Comments

A088722(a(n))=n, A088722(k)<>n, for n

Crossrefs

Formula

a(n) = 2*A130317(n+1) for n>0. - Chandler

Extensions

Extended by Ray Chandler, May 29 2008

A350756 Integers whose number of divisors that are triangular numbers sets a new record.

Original entry on oeis.org

1, 3, 6, 30, 90, 180, 210, 420, 630, 1260, 2520, 6930, 13860, 27720, 41580, 83160, 138600, 180180, 360360, 540540, 1081080, 1413720, 2162160, 3063060, 6126120, 12252240, 18378360, 36756720, 73513440, 91891800, 116396280, 183783600, 232792560, 349188840
Offset: 1

Author

Bernard Schott, Jan 13 2022

Keywords

Comments

Terms that are triangular: 1, 3, 6, 210, 630, 2162160, ...
The number of triangular divisors of a(n) is A007862(a(n)): 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, ...

Examples

			1260 has 36 divisors of which 12 are triangular numbers {1, 3, 6, 10, 15, 21, 28, 36, 45, 105, 210, 630}. No positive integer smaller than 1260 has as many as twelve triangular divisors; hence 1260 is a term.
		

Crossrefs

Similar for A046952 (squares), A053624 (odd), A093036 (palindromes), A181808 (even), A340548 (repdigits), A340549 (repunits) divisors.

Programs

  • Mathematica
    max=0;Do[If[(d=Length@Select[Divisors@k,IntegerQ[(Sqrt[8#+1]-1)/2]&])>max,Print@k;max=d],{k,10^10}] (* Giorgos Kalogeropoulos, Jan 13 2022 *)
  • PARI
    lista(nn) = {my(r=0); for (n=1, nn, my(m = sumdiv(n, d, ispolygonal(d,3))); if (m>r, r=m; print1(n", ")));} \\ Michel Marcus, Jan 14 2022

A358542 a(n) is the smallest number with exactly n divisors that are tetrahedral numbers.

Original entry on oeis.org

1, 4, 56, 20, 120, 280, 560, 840, 1680, 10920, 9240, 18480, 55440, 120120, 240240, 314160, 628320, 1441440, 2282280, 7225680, 4564560, 9129120, 13693680, 27387360, 54774720, 68468400, 77597520, 136936800, 155195040, 310390080, 465585120, 775975200, 1163962800
Offset: 1

Author

Ilya Gutkovskiy, Nov 21 2022

Keywords

Examples

			a(3) = 56 because 56 has 3 tetrahedral divisors {1, 4, 56} and this is the smallest such number.
		

Programs

  • PARI
    istetrah(n) = my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n; \\ A000292
    a(n) = my(k=1); while (sumdiv(k, d, istetrah(d)) != n, k++); k; \\ Michel Marcus, Nov 21 2022

Extensions

a(20)-a(22) from Michel Marcus, Nov 21 2022
a(23)-a(30) from Jinyuan Wang, Nov 28 2022
a(31) from Martin Ehrenstein, Dec 02 2022
a(32) and a(33) from Lucas A. Brown, Dec 14 2022

A358544 a(n) is the smallest number with exactly n divisors that are centered triangular numbers.

Original entry on oeis.org

1, 4, 20, 320, 460, 5440, 14260, 12920, 168640, 103360, 594320, 3878720, 2377280, 9211960, 18423920, 36847840, 125995840, 73695680, 865924240, 976467760, 1952935520, 3463696960, 3905871040, 31246968320, 22946992360
Offset: 1

Author

Ilya Gutkovskiy, Nov 21 2022

Keywords

Comments

Any subsequent terms are > 10^10. - Lucas A. Brown, Dec 24 2022

Examples

			a(3) = 20 because 20 has 3 centered triangular divisors {1, 4, 10} and this is the smallest such number.
		

Programs

  • PARI
    isct(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); \\ A005448
    a(n) = my(k=1); while (sumdiv(k, d, isct(d)) != n, k++); k; \\ Michel Marcus, Nov 21 2022

Extensions

a(14) from Michel Marcus, Nov 21 2022
a(15)-a(25) from Jinyuan Wang, Nov 29 2022

A287142 Least k such that the number of pairs of consecutive divisors of k equals n.

Original entry on oeis.org

1, 2, 6, 12, 72, 60, 180, 360, 420, 840, 1260, 3780, 2520, 5040, 13860, 36960, 41580, 27720, 55440, 83160, 166320, 277200, 491400, 471240, 360360, 1113840, 720720, 1081080, 3341520, 2162160, 2827440, 5405400, 4324320, 12972960, 6126120, 16576560, 28274400
Offset: 0

Author

Michel Lagneau, May 20 2017

Keywords

Comments

a(n) is even for n > 0.
We observe numbers of the decimal form (abcabc) = 360360, 720720 and numbers of the decimal form (abcabc0) = 1081080, 2162160, 5405400, 4324320, 6126120.
Observation and questions: many terms are products of powers of a contiguous set of the smallest primes. Many early terms of a(n) are in A002182; e.g., a(35) - A002182(44). The smallest exception outside of the empty product a(0) = 1 is a(22) = 491400 = 2^3 * 3^3 * 5^2 * 7 * 13. In other words, many terms have A006530(a(n)) < A053669(a(n)); a(22) is the smallest exception. Other exceptions include {471240, 1113840, 3341520, 2827440, 16576560, 28274400, ...}. A000720(A053669(a(22))) - A000720(A006530(a(22))) = 1, but the first instance of 2 for this function is a(35) = 16576560. This is evident by mapping A054841 across a(n). Are there a finite number of terms of a(n) that are also in A002182? Are there a finite number of terms of a(n) that have A006530(a(n)) < A053669(a(n)); are they becoming less frequent as n increases? - Michael De Vlieger, May 20 2017
In other words, a(n) is the least integer with exactly n divisors that are oblong (A002378). - Bernard Schott, Jul 30 2022

Examples

			a(3) = 12 because the divisors of 12 are {1, 2, 3, 4, 6, 12} with three pairs of consecutive divisors (1, 2), (2, 3) and (3, 4).
		

Crossrefs

Essentially the same as A088726.

Programs

  • Maple
    with(numtheory):
    for n from 0 to 60 do:
    ii:=0:
      for k from 1 to 10^8 while(ii=0) do:
        d0:=divisors(k):n0:=nops(d0):c0:=0:
          for i from 1 to n0-1 do:
            if d0[i+1]=d0[i]+1
             then
              c0:=c0+1:
              else
             fi:
           od:
           if c0=n
           then
         ii:=1:printf(“%d %d \n”,n,k):
         else
         fi:
       od:
      od:
  • Mathematica
    Function[s, Function[t, ReplacePart[t, Map[#1 -> #2 & @@ # &, Transpose@{1 + Keys@ s, Values[s][[All, 1]]}]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Table[DivisorSum[n, 1 &, Divisible[n, # + 1] &], {n, 2 * 10^6}] (* Michael De Vlieger, May 20 2017, Version 10 *)
  • PARI
    isok(n,k) = {dk = divisors(k); ddk = vector(#dk-1, j, dk[j+1] - dk[j]); #select(x->x==1, ddk) == n;}
    a(n) = {my(k=1); while (!isok(n, k), k++); k;} \\ Michel Marcus, May 20 2017

Formula

a(n) = 2*A130317(n) for n >= 1. - Bernard Schott, Jul 30 2022

A356132 Least integer with n pentagonal divisors.

Original entry on oeis.org

1, 5, 35, 70, 210, 420, 2310, 4620, 18480, 32340, 60060, 120120, 240240, 720720, 1261260, 1141140, 2042040, 4084080, 4564560, 13693680, 19399380, 58198140, 95855760, 38798760, 116396280, 193993800, 77597520, 232792560, 543182640, 387987600, 1125164040
Offset: 1

Author

Michel Marcus, Jul 27 2022

Keywords

Crossrefs

Programs

  • C
    See Links section.
  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, ispolygonal(d, 5)) != n, k++); k;
    

Extensions

More terms from Rémy Sigrist, Jul 27 2022

A358539 a(n) is the smallest number with exactly n divisors that are n-gonal numbers.

Original entry on oeis.org

6, 36, 210, 1260, 6426, 3360, 351000, 207900, 3749460, 1153152, 15036840, 204204000, 213825150, 11737440, 91797866160, 1006485480, 2310808500, 4966241280, 22651328700, 325269404460, 14266470332400, 11203920000, 256653797400, 45843256859400, 59207908359600, 46822406400
Offset: 3

Author

Ilya Gutkovskiy, Nov 21 2022

Keywords

Examples

			a(5) = 210 because 210 has 5 pentagonal divisors {1, 5, 35, 70, 210} and this is the smallest such number.
		

Programs

  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, ispolygonal(d, n)) != n, k++); k; \\ Michel Marcus, Nov 21 2022

Extensions

a(12)-a(13) from Michel Marcus, Nov 21 2022
a(14)-a(16) from Daniel Suteu, Dec 04 2022
a(17)-a(28) from Martin Ehrenstein, Dec 05 2022

A357842 a(n) is the smallest number k for which k and the arithmetic derivative k' (A003415) have exactly n triangular divisors (A000217).

Original entry on oeis.org

2, 27, 18, 72, 612, 1764, 756, 8100, 27000, 97200, 66528, 175500, 93600, 280800, 1731600, 661500, 680400, 3704400, 34177500, 11107800, 16581600, 20065500, 108486000, 102910500, 108353700, 181912500, 314874000, 462672000, 4408236000, 229975200, 2297786400, 672348600, 925041600, 1344697200, 158230800
Offset: 1

Author

Marius A. Burtea, Oct 20 2022

Keywords

Examples

			2 has only the divisor 1 = A000217(1) and 2' = 1 = A000217(1), so a(1) = 2.
27 and 27' = 27 have the divisors 1 = A000217(1), 3 = A000217(2) triangular numbers, so a(2) = 27.
		

Crossrefs

Programs

  • Magma
    tr:=func; f:=func;  a:=[]; for n in [1..30] do k:=2 ; while tr(k) ne n or tr(Floor(f(k))) ne n do k:=k+1; end while; Append(~a,k); end for; a;
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); tridiv[n_] := DivisorSum[n, 1 &, IntegerQ[Sqrt[8*# + 1]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 2, i}, While[c < len && n < nmax, i = tridiv[n]; If[i <= len && s[[i]] == 0 && tridiv[d[n]] == i, c++; s[[i]] = n]; n++]; s]; seq[10, 10^6] (* Amiram Eldar, Oct 21 2022 *)
  • PARI
    f(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ A007862
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    a(n) = my(k=2); while((f(k)!=n) || (f(ad(k))!=n), k++); k; \\ Michel Marcus, Oct 23 2022
Showing 1-9 of 9 results.