cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A068068 Number of odd unitary divisors of n. d is a unitary divisor of n if d divides n and gcd(d,n/d)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 1, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Robert G. Wilson v, Feb 19 2002

Keywords

Comments

Shadow transform of triangular numbers.
a(n) is the number of primitive Pythagorean triangles with inradius n. For the smallest inradius of exactly 2^n primitive Pythagorean triangles see A070826.
Number of primitive Pythagorean triangles with leg 4n. For smallest (even) leg of exactly 2^n PPTs, see A088860. - Lekraj Beedassy, Jul 12 2006
As shown by Chi and Killgrove, a(n) is the total number of primitive Pythagorean triples satisfying area = n * perimeter, or equivalently 2 raised to the power of the number of distinct, odd primes contained in n. - Ant King, Mar 15 2011
This is the case k=0 of the sum over the k-th powers of the odd unitary divisors of n, which is multiplicative with a(2^e)=1 and a(p^e)=1+p^(e*k), p>2, and has Dirichlet g.f. zeta(s)*zeta(s-k)*(1-2^(k-s))/( zeta(2s-k)*(1-2^(k-2*s)) ). - R. J. Mathar, Jun 20 2011
Also the number of odd squarefree divisors of n: a(n) = Sum_{k = 1..A034444(k)} (A077610(n,k) mod 2) = Sum_{k = 1..A034444(k)} (A206778(n,k) mod 2). - Reinhard Zumkeller, Feb 12 2012
a(n) is also the number of even unitary divisors of 2*n. - Amiram Eldar, Jan 28 2023

Crossrefs

Programs

  • Haskell
    a068068 = length . filter odd . a077610_row
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Maple
    A068068 := proc(n) local a,f; a :=1 ; for f in ifactors(n)[2] do if op(1,f) > 2 then a := a*2 ; end if; end do: a ; end proc: # R. J. Mathar, Apr 16 2011
  • Mathematica
    a[n_] := Length[Select[Divisors[n], OddQ[ # ]&&GCD[ #, n/# ]==1&]]
    a[n_] := 2^(PrimeNu[n]+Mod[n, 2]-1); Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *)
    f[p_, e_] := If[p == 2, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2)*(gcd(d, n/d)==1)); \\ Michel Marcus, May 13 2014
    
  • PARI
    a(n) = 2^omega(n>>valuation(n,2)) \\ Charles R Greathouse IV, May 14 2014

Formula

a(n) = A034444(2n)/2. If n is even, a(n) = 2^(omega(n)-1); if n is odd, a(n) = 2^omega(n). Here omega(n) = A001221(n) is the number of distinct prime divisors of n.
Multiplicative with a(2^e) = 1, a(p^e) = 2, p>2. - Christian G. Bower May 18 2005
a(n) = A024361(4n). - Lekraj Beedassy, Jul 12 2006
Dirichlet g.f.: zeta^2(s)/ ( zeta(2*s)*(1+2^(-s)) ). Dirichlet convolution of A034444 and A154269. - R. J. Mathar, Apr 16 2011
a(n) = Sum_{d|n} mu(2*d)^2. - Ridouane Oudra, Aug 11 2019
Sum_{k=1..n} a(k) ~ 4*n*((log(n) + 2*gamma - 1 + log(2)/3) / Pi^2 - 12*zeta'(2) / Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 18 2020
a(n) = Sum_{d divides n, d odd} mu(d)^2. - Peter Bala, Feb 01 2024

Extensions

Edited by Dean Hickerson, Jun 08 2002

A276945 Square array A(row,col): A(row,1) = A276155(row), and for col > 1, A(row,col) = A276154(A(row,col-1)); Dispersion of primorial base left shift A276154.

Original entry on oeis.org

1, 2, 3, 6, 8, 4, 30, 36, 12, 5, 210, 240, 60, 14, 7, 2310, 2520, 420, 66, 32, 9, 30030, 32340, 4620, 450, 216, 38, 10, 510510, 540540, 60060, 4830, 2340, 246, 42, 11, 9699690, 10210200, 1021020, 62370, 30240, 2550, 270, 44, 13, 223092870, 232792560, 19399380, 1051050, 512820, 32550, 2730, 276, 62, 15
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Comments

The array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Entries in column k are all multiples of A002110(k-1). Dividing that factor out gives array A286625. - Antti Karttunen, Jun 30 2017

Examples

			The top left corner of the array:
   1,  2,   6,   30,   210,    2310,    30030,    510510
   3,  8,  36,  240,  2520,   32340,   540540,  10210200
   4, 12,  60,  420,  4620,   60060,  1021020,  19399380
   5, 14,  66,  450,  4830,   62370,  1051050,  19909890
   7, 32, 216, 2340, 30240,  512820,  9729720, 223603380
   9, 38, 246, 2550, 32550,  542850, 10240230, 233303070
  10, 42, 270, 2730, 34650,  570570, 10720710, 242492250
  11, 44, 276, 2760, 34860,  572880, 10750740, 243002760
  13, 62, 426, 4650, 60270, 1023330, 19429410, 446696250
  15, 68, 456, 4860, 62580, 1053360, 19939920, 456395940
  16, 72, 480, 5040, 64680, 1081080, 20420400, 465585120
  17, 74, 486, 5070, 64890, 1083390, 20450430, 466095630
  18, 90, 630, 6930, 90090, 1531530, 29099070, 669278610
		

Crossrefs

Inverse permutation: A276946.
Transpose: A276943. One more than A286615.
Column 1: A276155.
Row 1: A002110.
Row 2: A276939.
Row 3: A088860 (2*A002110).
Row 11: 2*A276939 (row 2) from 16, 72, 480, 5040, 64680, ... onward.
Row 13: 3*A002110, from 18, 90, 630, 6930, 90090, ... onward.
Cf. A276154.
Cf. also arrays A286625, A276955.

Programs

Formula

A(row,1) = A276155(row); for row > 1, A(row,col) = A276154(A(row,col-1)).

A289272 Inverse to A289271.

Original entry on oeis.org

1, 2, 3, 6, 4, 10, 12, 30, 5, 14, 15, 42, 20, 70, 60, 210, 7, 18, 21, 66, 28, 90, 84, 330, 35, 126, 105, 462, 140, 630, 420, 2310, 8, 22, 24, 78, 36, 110, 132, 390, 40, 154, 120, 546, 180, 770, 660, 2730, 56, 198, 168, 858, 252, 990, 924, 4290, 280, 1386, 840
Offset: 0

Views

Author

Rémy Sigrist, Jun 30 2017

Keywords

Comments

a(2^n-1) = A002110(n) for any n >= 0.
a(2^(n-1)) = A000961(n+1) for any n > 0.
A001221(a(n)) = A000120(n) for any n >= 0.
From Antti Karttunen, Jan 01 2019: (Start)
A034684(a(n)) = A000961(1+A001511(n)) for any n >= 1. (See also Rémy Sigrist's comment in A289271).
This sequence can be regarded also as an irregular triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., that is, it can be represented as a binary tree, where each left hand child contains A322991(k), and each right hand child contains A322992(k), when their parent contains k:
1
|
...................2...................
3 6
4......../ \........10 12......../ \........30
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 14 15 42 20 70 60 210
7 18 21 66 28 90 84 330 35 126 105 462 140 630 420 2310
etc.
The leftmost edge is A000961, the next lefmost is A278568 (after 2: 6, 10, 14, 18, ...), the righmost edge is A002110, the next rightmost A088860 but with 3 instead of 4.
Compare also to trees like A005940 (A163511) and A052330.
(End)

Examples

			A289271(1) = 0, hence a(0) = 1.
A289271(2) = 1, hence a(1) = 2.
A289271(3) = 2, hence a(2) = 3.
A289271(4) = 4, hence a(4) = 4.
A289271(5) = 8, hence a(8) = 5.
A289271(6) = 3, hence a(3) = 6.
A289271(7) = 16, hence a(16) = 7.
A289271(8) = 32, hence a(32) = 8.
A289271(9) = 64, hence a(64) = 9.
A289271(10) = 5, hence a(5) = 10.
		

Crossrefs

Programs

  • PARI
    See Links section.
    
  • PARI
    A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); }; \\ Antti Karttunen, Jan 01 2019

A363127 Number of non-modes in the multiset of prime factors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			The prime factorization of 13860 is 2*2*3*3*5*7*11, with non-modes {5,7,11}, so a(13860) = 3.
		

Crossrefs

Positions of first appearances converge to A088860.
For modes instead of non-modes we have A362611, triangle A362614.
For co-modes instead of non-modes we have A362613, triangle A362615.
The triangle for this rank statistic (number of non-modes) is A363126.
For non-co-modes instead of non-modes we have A363131, triangle A363130.
A027746 lists prime factors, A112798 indices, A124010 exponents.
A047966 counts uniform partitions, ranks A072774.
A363124 counts partitions with more than one non-mode, complement A363125.

Programs

  • Maple
    f:= proc(n) local F,m;
      F:= ifactors(n)[2][..,2];
      m:= max(F);
      nops(select(`<`,F,m))
    end proc;
    map(f, [$1..100]); # Robert Israel, Aug 01 2025
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]
    				

A339737 Triangle read by rows where T(n,k) is the number of integer partitions of n with greatest gap k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 1, 2, 2, 1, 1, 0, 5, 1, 3, 2, 2, 1, 1, 0, 6, 2, 3, 4, 3, 2, 1, 1, 0, 8, 2, 4, 5, 4, 3, 2, 1, 1, 0, 10, 2, 5, 7, 6, 5, 3, 2, 1, 1, 0, 12, 3, 6, 8, 9, 6, 5, 3, 2, 1, 1, 0, 15, 3, 8, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.

Examples

			Triangle begins:
   1
   1   0
   1   1   0
   2   0   1   0
   2   1   1   1   0
   3   1   1   1   1   0
   4   1   2   2   1   1   0
   5   1   3   2   2   1   1   0
   6   2   3   4   3   2   1   1   0
   8   2   4   5   4   3   2   1   1   0
  10   2   5   7   6   5   3   2   1   1   0
  12   3   6   8   9   6   5   3   2   1   1   0
  15   3   8  11  11  10   7   5   3   2   1   1   0
  18   4   9  13  15  13  10   7   5   3   2   1   1   0
  22   5  10  17  19  18  14  11   7   5   3   2   1   1   0
  27   5  13  20  24  23  20  14  11   7   5   3   2   1   1   0
For example, row n = 9 counts the following partitions:
  (3321)       (432)   (333)      (54)      (522)    (63)    (72)   (81)  (9)
  (22221)      (3222)  (4311)     (441)     (531)    (621)   (711)
  (32211)              (33111)    (4221)    (5211)   (6111)
  (222111)             (3111111)  (42111)   (51111)
  (321111)                        (411111)
  (2211111)
  (21111111)
  (111111111)
		

Crossrefs

Column k = 0 is A000009.
Row sums are A000041.
Central diagonal is A000041.
Column k = 1 is A087897.
The version for least gap is A264401, with Heinz number encoding A257993.
The version for greatest difference is A286469 or A286470.
An encoding (of greatest gap) using Heinz numbers is A339662.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A048004 counts compositions by greatest part.
A056239 adds up prime indices, row sums of A112798.
A064391 is the version for crank.
A064428 counts partitions of nonnegative crank.
A073491 list numbers with gap-free prime indices.
A107428 counts gap-free compositions.
A238709/A238710 counts partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[Length[Select[IntegerPartitions[n],maxgap[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    S(n,k)={if(k>n, O(x*x^n), x^k*(S(n-k,k+1) + 1)/(1 - x^k))}
    ColGf(k,n) = {(k==0) + S(n,k+1)/prod(j=1, k-1, 1 - x^j + O(x^max(1,n-k)))}
    A(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))}
    { my(M=A(10)); for(i=1, #M, print(M[i,1..i])) } \\ Andrew Howroyd, Jan 13 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 13 2024

A097250 Smallest m such that A097249(m) = n; from n=1 onwards, twice the primorials, 2*A002110(n).

Original entry on oeis.org

1, 4, 12, 60, 420, 4620, 60060, 1021020, 19399380, 446185740, 12939386460, 401120980260, 14841476269620, 608500527054420, 26165522663340060, 1229779565176982820, 65178316954380089460, 3845520700308425278140, 234576762718813941966540, 15716643102160534111758180
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 03 2004

Keywords

Comments

A097249(a(n))=n and A097249(m)
a(n) = A088860(n) for n>=1. - G. C. Greubel, Apr 23 2017

Crossrefs

From a(1)=4 onwards, row 3 of A276945.

Programs

  • Mathematica
    Join[{1}, 2 Denominator[Accumulate[1/Prime[Range[20]]]]] (* Vincenzo Librandi, Mar 25 2017 *)
    Join[{1}, 2*FoldList[Times, 1, Prime[Range[50]]]] (* G. C. Greubel, Apr 23 2017 *)

Formula

a(n) = if n=0 then 1 else 2*A002110(n).

Extensions

Name amended by Antti Karttunen, Sep 24 2016
a(18)-a(19) from Vincenzo Librandi, Mar 25 2017

A370121 Triangle read by rows: T(n,k) = A002110(n) + A002110(k), 0 <= k <= n; sums of two primorials, not necessarily distinct.

Original entry on oeis.org

2, 3, 4, 7, 8, 12, 31, 32, 36, 60, 211, 212, 216, 240, 420, 2311, 2312, 2316, 2340, 2520, 4620, 30031, 30032, 30036, 30060, 30240, 32340, 60060, 510511, 510512, 510516, 510540, 510720, 512820, 540540, 1021020, 9699691, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380, 223092871, 223092872
Offset: 0

Author

Antti Karttunen, Feb 29 2024

Keywords

Comments

After the initial 2, numbers with either one 2 or two 1's in their primorial base representation (A049345), with all the other digits zeros.

Examples

			Triangle begins as:
        2;
        3,       4;
        7,       8,      12;
       31,      32,      36,      60;
      211,     212,     216,     240,     420;
     2311,    2312,    2316,    2340,    2520,    4620;
    30031,   30032,   30036,   30060,   30240,   32340,   60060;
   510511,  510512,  510516,  510540,  510720,  512820,  540540,  1021020;
  9699691, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380;
		

Crossrefs

Cf. A002110, A049345, A087112, A276086, A276150, A370129 (arithmetic derivative applied to this triangle).
Cf. A006862 (left edge), A088860 (right edge).
Cf. A177689 (same triangle without the right edge), A370134 (without the leftmost column).
Subsequence of A370132.
Cf. also A173786.

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A370121(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); (A002110(c) + A002110(n - binomial(c + 1, 2))); };

Formula

For n >= 1, A276150(a(n)) = 2.
For n >= 1, A276086(a(n)) = A087112(1+n).

A309004 The number of numbers with the same prime signature and set of distinct prime factors as n (including n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Author

Amiram Eldar, Jul 22 2019

Keywords

Comments

The number of permutations of the exponents in the prime signature of n.
The number of terms in the n-th row of A111470.

Examples

			a(12) = a(18) = 2 since 12 = 2^2 * 3 and 18 = 3^2 * 2 have the same prime signature, (2, 1), and the same set of distinct prime factors, {2, 3}.
a(60) = a(90) = a(150) = 3 since 60 = 2^2 * 3 * 5, 90 = 3^2 * 2 * 5, and 150 = 5^2 * 2 * 3 have the same prime signature, (2, 1, 1), and the same set of distinct prime factors, {2, 3, 5}.
		

Programs

  • Mathematica
    a[n_] := Multinomial @@ Tally[FactorInteger[n][[;;,2]]][[;;,2]]; Array[a, 100]
  • PARI
    A008480(n) = { my(es=factor(n)[, 2], s=vecsum(es)); s!/prod(i=1, #es, es[i]!); };
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A309004(n) = A008480(A181819(n)); \\ Antti Karttunen, Sep 27 2019

Formula

a(n) = 1 if and only if n is a power of a squarefree number (A072774).
a(A088860(k)) = k.
a(A006939(k)) = A000142(k) = k!.
a(n) = A008480(A181819(n)). - Antti Karttunen, Sep 27 2019

Extensions

More terms from Antti Karttunen, Sep 27 2019

A350140 Nonsquarefree numbers whose prime signature has at least one odd part other the first or last.

Original entry on oeis.org

60, 84, 120, 132, 140, 150, 156, 168, 204, 220, 228, 240, 260, 264, 270, 276, 280, 294, 300, 308, 312, 315, 336, 340, 348, 364, 372, 378, 380, 408, 420, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 528, 532, 540, 552, 560, 564, 572, 580, 585, 588
Offset: 1

Author

Gus Wiseman, Dec 25 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also Heinz numbers of non-weakly alternating non-strict integer partitions, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. These partitions are counted by A349796. This sequence involves the somewhat degenerate case where no strict increases are allowed.

Examples

			The terms together with their Heinz partitions begin (A-E = 10-14):
     60: (3211)      276: (9211)      420: (43211)
     84: (4211)      280: (43111)     440: (53111)
    120: (32111)     294: (4421)      444: (C211)
    132: (5211)      300: (33211)     456: (82111)
    140: (4311)      308: (5411)      460: (9311)
    150: (3321)      312: (62111)     476: (7411)
    156: (6211)      315: (4322)      480: (3211111)
    168: (42111)     336: (421111)    490: (4431)
    204: (7211)      340: (7311)      492: (D211)
    220: (5311)      348: (A211)      495: (5322)
    228: (8211)      364: (6411)      516: (E211)
    240: (321111)    372: (B211)      520: (63111)
    260: (6311)      378: (42221)     528: (521111)
    264: (52111)     380: (8311)      532: (8411)
    270: (32221)     408: (72111)     540: (322211)
		

Crossrefs

Including all nonsquarefree numbers gives A013929, complement A005117.
Subsets include A088860 and A110286.
Signatures of this type are counted by A274230, complement A027383.
The strict instead of non-strict version is A336568, counted by A347548.
A version for compositions allowing strict is A349057, counted by A349053.
Allowing strict partitions gives A349794, counted by A349061.
These partitions are counted by A349796.
The complement in nonsquarefree partitions is A350137, counted by A349795.
A000041 = integer partitions, strict A000009.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A096441 = weakly alternating 0-appended partitions.
A124010 = prime signature, sorted A118914.
A345164 = alternating permutations of prime indices, complement A350251.
A345170 = partitions w/ an alternating permutation, ranked by A345172.
A349052/A129852/A129853 = weakly alternating compositions.
A349056 = weakly alternating permutations of prime indices.
A349058 = weakly alternating patterns, complement A350138.
A349060 = weakly alternating partitions, strong A349801.
A349798 = weakly but not strongly alternating perms of prime indices.

Programs

  • Mathematica
    Select[Range[300],!SquareFreeQ[#]&&PrimeNu[#]>1&& !And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]

Formula

Complement of A005117 in A349794.

A364999 Numbers k neither squarefree nor prime power such that both rad(k)*A119288(k) > k and rad(k)*A053669(k) > k.

Original entry on oeis.org

12, 20, 28, 44, 52, 60, 68, 76, 84, 92, 116, 124, 132, 140, 148, 156, 164, 172, 188, 204, 212, 220, 228, 236, 244, 260, 268, 276, 284, 292, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 404, 412, 420, 428, 436, 444, 452, 460, 476, 492, 508, 516, 524, 532, 548
Offset: 1

Author

Michael De Vlieger, Aug 16 2023

Keywords

Comments

Subset of A126706, numbers that are neither squarefree nor prime powers.
For k in this sequence, let p = A119288(k), q = A053669(k), and r = A007947(k).
A355432(k) = A360543(k) = 0. There exist neither nondivisor m < k such that rad(m) = rad(k), nor m < k, gcd(m,k) > 1 such that both omega(k) > omega(m) and rad(m) | k.
Apparently this is A081770 without the leading 4. - R. J. Mathar, Sep 05 2023
From Peter Munn, Mar 05 2024: (Start)
The preceding observation is true for the whole sequence, for reasons outlined below.
To qualify for this sequence, a number k must be smaller than 2 different multiples of rad(k): one based on a divisor, A119288(k): the other on a nondivisor, A053669(k).
For k that is not a prime power, straightforward calculations show (1) if k = 2 * rad(k) then k satisfies both of these comparisons, whereas (2) for k >= 3 * rad(k), k fails the divisor-based comparison if k is a multiple of 6 and fails the nondivisor-based comparison otherwise.
(End)

Examples

			Let b(n) = A126706(n), S = A360767, and T = A363082.
b(1) = a(1) = 12 since p*r = 3*6 = 18 and q*r = 5*6 = 30, and both exceed 12. Indeed, 12 is in both S and T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18; 18 is not in S.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36.
b(7) = 40 is not in the sequence since p*r = 5*10 = 50 and q*r = 3*10 = 30. Though 50 > 40, 30 < 40, and is not in T, etc.
		

Programs

  • Mathematica
    Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]

Formula

Intersection of A363082 and A360767.
From Peter Munn, Feb 21 2024: (Start)
a(n) = 2*A039956(n+1).
Asymptotic density is 1/Pi^2 = 0.101321183642337... (A092742). (End)
From Michael De Vlieger, Mar 08 2024: (Start)
{a(n)} = A366825 \ A366460, i.e., even terms in A366825.
A088860 = {a(n)} intersect A025487 = {a(n)} intersect A055932, where A088860(k) = 2*A002110(k). (End)
Showing 1-10 of 19 results. Next