cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A067756 Prime hypotenuses of Pythagorean triangles with a prime leg.

Original entry on oeis.org

5, 13, 61, 181, 421, 1741, 1861, 2521, 3121, 5101, 8581, 9661, 16381, 19801, 36721, 60901, 71821, 83641, 100801, 106261, 135721, 161881, 163021, 199081, 205441, 218461, 273061, 282001, 337021, 388081, 431521, 491041, 531481, 539761, 552301
Offset: 1

Views

Author

Henry Bottomley, Jan 31 2002

Keywords

Comments

Apart from the first two terms, every term is congruent to 1 modulo 60 and is of the form 450k^2 +- 30k + 1 or 450k^2 +- 330k + 61 for some k.
Every term of the sequence after the second is a prime p congruent to 1 (mod 60), i.e., for n > 2, a(n) is a subsequence of A088955. The Pythagorean triple is {sqrt(2p-1), p-1, p}. - Lekraj Beedassy, Mar 12 2002
Primes p such that 2*p-1 is the square of a prime. - Robert Israel, Sep 16 2014
Primes p of the form ((q+1)/2)^2 + ((q-1)/2)^2, where q is a prime; then q belongs to A048161. - Thomas Ordowski, May 22 2015
The other (i.e., long) leg of the Pythagorean triangle is p-1. - Zak Seidov, Oct 30 2015

Examples

			For a(1)=5, the right triangle is 3, 4, 5 with 3 and 5 prime.
For a(10)=5101, the right triangle is 101, 5100, 5101 with 101 and 5101 prime.
		

Crossrefs

Contains every value of A051859.

Programs

  • Maple
    N:= 10^8: # to get all terms <= N
    Primes:= select(isprime,[$3..floor(sqrt(2*N-1))]):
    f:= proc(p) local q; q:= (p^2+1)/2; if isprime(q) then q else NULL fi end proc:
    map(f, Primes); # Robert Israel, Sep 16 2014
  • Mathematica
    f[n_]:=((p-1)/2)^2+((p+1)/2)^2; lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,f[p]]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 27 2009 *)
  • PARI
    forprime(p=3,10^3,if(isprime(q=(p^2+1)/2),print1(q,", "))) \\ Derek Orr, Apr 30 2015

Formula

a(n) = (A048161(n)^2 + 1)/2 = A067755(n) + 1.

A088958 Numbers n such that 60*n+1 is prime.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 11, 17, 20, 22, 23, 27, 29, 30, 31, 36, 37, 38, 39, 42, 50, 51, 52, 53, 55, 56, 59, 67, 70, 71, 74, 76, 77, 80, 81, 85, 88, 92, 93, 94, 95, 97, 98, 102, 105, 106, 107, 108, 111, 113, 114, 116, 122, 126, 127, 128, 129, 135, 136, 137, 141, 142, 143, 144
Offset: 1

Views

Author

Lekraj Beedassy, Dec 01 2003

Keywords

Crossrefs

Programs

Formula

a(n) = (A088955(n)-1)/60 = (A000040(A090605(n))-1)/60.

Extensions

More terms from Ray Chandler, Dec 02 2003

A090605 Numbers m such that m-th prime is of the form 60*k+1.

Original entry on oeis.org

18, 42, 53, 82, 100, 110, 121, 172, 197, 216, 221, 257, 271, 279, 284, 326, 331, 339, 347, 369, 431, 438, 445, 450, 464, 474, 496, 556, 575, 585, 603, 618, 624, 647, 651, 682, 701, 730, 737, 741, 751, 764, 775, 798, 820, 829, 835, 841, 859, 873, 881, 894
Offset: 1

Views

Author

Ray Chandler, Dec 06 2003

Keywords

Comments

A088955 indexed by A000040.
The asymptotic density of this sequence is 1/16 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[900], Mod[Prime[#], 60] == 1 &] (* Amiram Eldar, Mar 01 2021 *)

Formula

a(n) = k such that A000040(k) = A088955(n) = 60*A088958(n)+1.

A263770 Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Original entry on oeis.org

7, 5, 7, 17, 13, 29, 19, 41, 73, 31, 97, 191, 43, 89, 97, 109, 61, 311, 137, 73, 149, 241, 337, 181, 197, 103, 313, 109, 331, 229, 257, 397, 139, 281, 151, 457, 317, 821, 337, 349, 181, 547, 193, 389, 199, 401, 1061, 449, 229, 461, 937, 241, 727, 757, 1033, 1321, 271, 1361, 557
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

Least prime q such that q == 1 (mod prime(n) + 1).

Crossrefs

Programs

  • Mathematica
    Table[q = 2; While[! IntegerQ[(Prime[n]^2 + q Prime@ n)/(Prime@ n + 1)], q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)
  • PARI
    a(n) = {p = prime(n); q = 2; while ((p^2 + p*q) % (p + 1), q = nextprime(q+1)); q;} \\ Michel Marcus, Oct 26 2015

Formula

5 is in this sequence because (prime(2)^2 + 5*prime(2))/(prime(2) + 1) = 6 and 5 is prime.

A142786 Primes congruent to 7 mod 60.

Original entry on oeis.org

7, 67, 127, 307, 367, 487, 547, 607, 727, 787, 907, 967, 1087, 1327, 1447, 1567, 1627, 1747, 1867, 1987, 2287, 2347, 2467, 2647, 2707, 2767, 2887, 3067, 3187, 3307, 3547, 3607, 3727, 3847, 3907, 3967, 4027, 4327, 4447, 4507, 4567, 4987, 5107, 5167, 5227
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Comment from Joshua S.M. Weiner, Oct 12 2012 (Start)
Intersection of A068229 and A141882. Subsequence of A132231.
Congruence classes of primes mod 60: A088955 (1), (this sequence 7), A117047 (11), A142787 (13), A142788 (17), A142789 (19), A142790 (23), A142791 (29), A142792 (31), A142793 (37), A142794 (41), A142795 (43), A142796 (47), A142797 (49), A142798 (53), A142799 (59). (End)

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6000) | p mod 60 eq 7 ]; // Vincenzo Librandi, Sep 04 2012
  • Mathematica
    Select[Prime[Range[1000]], Mod[#, 60] == 7 &] (* T. D. Noe, Oct 12 2012 *)
    Select[Range[7,5300,60],PrimeQ] (* Harvey P. Dale, Nov 21 2018 *)

A217692 Primes p such that p = 1 + 27720*k for some k.

Original entry on oeis.org

55441, 110881, 332641, 388081, 415801, 471241, 498961, 526681, 748441, 859321, 970201, 1025641, 1053361, 1108801, 1247401, 1275121, 1302841, 1358281, 1469161, 1580041, 1912681, 1940401, 1995841, 2051281, 2189881, 2273041, 2300761, 2383921, 2411641, 2855161
Offset: 1

Views

Author

Joshua S.M. Weiner, Oct 11 2012

Keywords

Comments

This is a congruence class of a prime wheel factorization mod 27720. Note that 27720 is the LCM of {1,...,11}.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^6) | IsOne(p mod 27720)]; // Bruno Berselli, Oct 12 2012
  • Mathematica
    Select[Table[1 + 27720*k, {k, 200}], PrimeQ] (* T. D. Noe, Oct 11 2012 *)
Showing 1-6 of 6 results.