cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A189686 Superabundant numbers (A004394) satisfying the reverse of Robin's inequality (A091901).

Original entry on oeis.org

2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 2520, 5040
Offset: 1

Views

Author

Geoffrey Caveney, Jean-Louis Nicolas, and Jonathan Sondow, May 30 2011

Keywords

Comments

5040 is the last element in the sequence if and only if the Riemann Hypothesis is true. (See Akbary and Friggstad in A004394.)

Crossrefs

Programs

  • Mathematica
    kmax = 10^4;
    A004394 = Join[{1}, Reap[For[r = 1; k = 2, k <= kmax, k = k + 2, s = DivisorSigma[-1, k]; If[s > r, r = s; Sow[k]]]][[2, 1]]];
    A067698 = Select[Range[2, kmax], DivisorSigma[1, #] > Exp[EulerGamma] # Log[Log[#]]&];
    Intersection[A004394, A067698] (* Jean-François Alcover, Jan 28 2019 *)
  • PARI
    is(n)=sigma(n) >= exp(Euler) * n * log(log(n)); \\ A067698
    lista(nn) = my(r=1, t); forstep(n=2, nn, 2, t=sigma(n, -1); if(t>r && is(n), r=t; print1(n, ", "))); \\ Michel Marcus, Jan 28 2019; adapted from A004394

Formula

Equals A004394 intersect A067698.

Extensions

Erroneous terms 1260 and 1680 removed by Jean-François Alcover, Jan 28 2019

A192884 Non-superabundant numbers satisfying the reverse of Robin's inequality (A091901).

Original entry on oeis.org

3, 5, 8, 9, 10, 16, 18, 20, 30, 72, 84
Offset: 1

Views

Author

Geoffrey Caveney, Jean-Louis Nicolas, and Jonathan Sondow, Jul 11 2011

Keywords

Comments

If another term exists, it is > 5040 and the Riemann Hypothesis is false.

Crossrefs

Cf. A004394 (superabundant), A091901 (Robin's inequality), A067698 (the reverse of Robin's inequality), A189686 (superabundant and the reverse of Robin's inequality).

A004394 Superabundant [or super-abundant] numbers: n such that sigma(n)/n > sigma(m)/m for all m < n, sigma(n) being A000203(n), the sum of the divisors of n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 21621600
Offset: 1

Views

Author

Keywords

Comments

Matthew Conroy points out that these are different from the highly composite numbers - see A002182. Jul 10 1996
With respect to the comment above, neither sequence is subsequence of the other. - Ivan N. Ianakiev, Feb 11 2020
Also n such that sigma_{-1}(n) > sigma_{-1}(m) for all m < n, where sigma_{-1}(n) is the sum of the reciprocals of the divisors of n. - Matthew Vandermast, Jun 09 2004
Ramanujan (1997, Section 59; written in 1915) called these numbers "generalized highly composite." Alaoglu and Erdős (1944) changed the terminology to "superabundant." - Jonathan Sondow, Jul 11 2011
Alaoglu and Erdős show that: (1) n is superabundant => n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2 >= e_3 >= ... >= e_p (and e_p is 1 unless n=4 or n=36); (2) if q < r are primes, then | e_r - floor(e_q*log(q)/log(r)) | <= 1; (3) q^{e_q} < 2^{e_2+2} for primes q, 2 < q <= p. - Keith Briggs, Apr 26 2005
It follows from Alaoglu and Erdős finding 1 (above) that, for n > 7, a(n) is a Zumkeller Number (A083207); for details, see Proposition 9 and Corollary 5 at Rao/Peng link (below). - Ivan N. Ianakiev, Feb 11 2020
See A166735 for superabundant numbers that are not highly composite, and A189228 for superabundant numbers that are not colossally abundant.
Pillai called these numbers "highly abundant numbers of the 1st order". - Amiram Eldar, Jun 30 2019

References

  • R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 112.
  • J. Sandor, "Abundant numbers", In: M. Hazewinkel, Encyclopedia of Mathematics, Supplement III, Kluwer Acad. Publ., 2002 (see pp. 19-21).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Almost the same as A077006.
The colossally abundant numbers A004490 are a subsequence, as are A023199.
Subsequence of A025487; apart from a(3) = 4 and a(7) = 36, a subsequence of A102750.
Cf. A112974 (number of superabundant numbers between colossally abundant numbers).
Cf. A091901 (Robin's inequality), A189686 (superabundant and the reverse of Robin's inequality), A192884 (non-superabundant and the reverse of Robin's inequality).

Programs

Formula

a(n+1) <= 2*a(n). - A.H.M. Smeets, Jul 10 2021

Extensions

Name edited by Peter Munn, Mar 13 2019

A073004 Decimal expansion of exp(gamma).

Original entry on oeis.org

1, 7, 8, 1, 0, 7, 2, 4, 1, 7, 9, 9, 0, 1, 9, 7, 9, 8, 5, 2, 3, 6, 5, 0, 4, 1, 0, 3, 1, 0, 7, 1, 7, 9, 5, 4, 9, 1, 6, 9, 6, 4, 5, 2, 1, 4, 3, 0, 3, 4, 3, 0, 2, 0, 5, 3, 5, 7, 6, 6, 5, 8, 7, 6, 5, 1, 2, 8, 4, 1, 0, 7, 6, 8, 1, 3, 5, 8, 8, 2, 9, 3, 7, 0, 7, 5, 7, 4, 2, 1, 6, 4, 8, 8, 4, 1, 8, 2, 8, 0, 3, 3, 4, 8, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

See references and additional links in A094644.
The Riemann hypothesis holds if and only if the inequality sigma(n)/(n*log(log(n))) < exp(gamma) is valid for all n >= 5041, (G. Robin, 1984). - Peter Luschny, Oct 18 2020
From Peter Bala, Aug 24 2025: (Start)
By definition, gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*exp(s(n+k)). Then it appears that E(n) converges rapidly to exp(gamma). For example, E(50) = 1.78107241799019798523650410310(43...) gives exp(gamma) correct to 29 decimal digits. Cf. A002389. (End)

Examples

			Exp(gamma) = 1.7810724179901979852365041031071795491696452143034302053...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.5.1 and 2.27.2, pp. 31, 187.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 166, 191, 208.

Crossrefs

Cf. A001620 (Euler-Mascheroni constant, gamma).
Cf. A001113, A002389, A067698, A080130, A091901, A094644 (continued fraction for exp(gamma)), A155969, A246499.

Programs

  • Magma
    R:=RealField(100); Exp(EulerGamma(R)); // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[ E^(EulerGamma), 10, 110] [[1]]
  • PARI
    exp(Euler)
    

Formula

By Mertens theorem, equals lim_{m->infinity}(1/log(prime(m))*Product_{k=1..m} 1/(1-1/prime(k))). - Stanislav Sykora, Nov 14 2014
Equals limsup_{n->oo} sigma(n)/(n*log(log(n))) (Gronwall, 1913). - Amiram Eldar, Nov 07 2020
Equals limsup_{n->oo} (Sum_{d|n} log(d)/d)/(log(log(n)))^2 (Erdős and Zaremba, 1973). - Amiram Eldar, Mar 03 2021
Equals Product_{k>=1} (1-1/(k+1))*exp(1/k). - Amiram Eldar, Mar 20 2022
Equals lim_{n->oo} n * Product_{prime p<=n} p^(1/(1-p)). - Thomas Ordowski, Jan 30 2023
Equals Product_{k>=1} (k/sqrt(2))^((-1)^k/(k*log(2))). - Antonio Graciá Llorente, Oct 11 2024
Equals lim_{n->oo} (1/log(n))*Product_{prime p<=n} p/(p - 1) [Mertens] (see Finch at p. 31). - Stefano Spezia, Oct 27 2024

A067698 Positive integers such that sigma(n) >= exp(gamma) * n * log(log(n)).

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180, 240, 360, 720, 840, 2520, 5040
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

Previous name was: Numbers with relatively many and large divisors.
n is in the sequence iff sigma(n) >= exp(gamma) * n * log(log(n)), where gamma = Euler-Mascheroni constant and sigma(n) = sum of divisors of n.
Robin has shown that 5040 is the last element in the sequence iff the Riemann hypothesis is true. Moreover the sequence is infinite if the Riemann hypothesis is false. Gronwall's theorem says that
lim sup_{n -> infinity} sigma(n)/(n*log(log(n))) = exp(gamma).
a(28) > 10^(10^13.11485), if the Riemann hypothesis is false (Morrill and Platt, 2021). Briggs (2006) found the lower bound 10^(10^10). - Amiram Eldar, Jul 23 2025

Examples

			9 is in the sequence since sigma(9) = 13 > 12.6184... = exp(gamma) * 9 * log(log(9)).
		

Crossrefs

Cf. A057641 (based on Lagarias's extension of Robin's result).

Programs

  • Maple
    with (numtheory): expgam := exp(evalf(gamma)): for i from 2 to 6000 do: a := sigma (i): b := expgam*i*evalf(ln(ln(i))): if a >= b then print (i, a, b): fi: od:
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > n*Exp@ EulerGamma*Log@ Log@n; lst = {}; Do[ If[ fQ[n], AppendTo[lst, n]], {n,2,10^4}]; lst (* Robert G. Wilson v, May 16 2003 *)
    Select[Range[2,5050], Exp[EulerGamma] # Log[Log[#]]-DivisorSigma[1,#]<0 &] (* Ant King, Feb 28 2013 *)
  • PARI
    is(n)=sigma(n) >= exp(Euler) * n * log(log(n)) \\ Charles R Greathouse IV, Feb 08 2017
    
  • Python
    from sympy import divisor_sigma, EulerGamma, E, log
    print([n for n in range(2, 5041) if divisor_sigma(n) >= (E**EulerGamma * n * log(log(n)))]) # Karl-Heinz Hofmann, Apr 22 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Max Alekseyev, Jul 17 2007
New name from Jud McCranie, Aug 14 2017
Showing 1-5 of 5 results.