cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A091515 Numbers k such that (2^k - 1)^2 - 2 = 4^k - 2^(k+1) - 1 is prime.

Original entry on oeis.org

2, 3, 4, 6, 7, 10, 12, 15, 18, 19, 21, 25, 27, 55, 129, 132, 159, 171, 175, 315, 324, 358, 393, 435, 786, 1459, 1707, 2923, 6462, 14289, 39012, 51637, 100224, 108127, 110953, 175749, 185580, 226749, 248949, 253987, 520363, 653490, 688042, 695631
Offset: 1

Views

Author

Eric W. Weisstein, Jan 17 2004

Keywords

Crossrefs

Programs

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
a(36)=175749 from Cletus Emmanuel (cemmanu(AT)yahoo.com), Oct 08 2004
a(37)=185580 from Cletus Emmanuel (cemmanu(AT)yahoo.com), Nov 03 2004
Edited by Ray Chandler, Nov 15 2004
a(38)=226749 from Steven Harvey, Jan 11 2005 and subsequently confirmed as next term
a(39) from Eric W. Weisstein, Mar 31 2006
a(40) = 253987 from Cletus Emmanuel (cemmanu(AT)yahoo.com), May 03 2007
a(41) = 520363 from Eric W. Weisstein, Jun 08 2016 (computed by Mark Rodenkirch)
a(42) = 653490 from Eric W. Weisstein, Jun 15 2016 (computed by Mark Rodenkirch)
a(43) = 688042 from Mark Rodenkirch, Jul 05 2016
a(44) = 695631 from Mark Rodenkirch, Jul 16 2016

A093069 a(n) = (2^n + 1)^2 - 2.

Original entry on oeis.org

7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623, 4198399, 16785407, 67125247, 268468223, 1073807359, 4295098367, 17180131327, 68720001023, 274878955519, 1099513724927, 4398050705407, 17592194433023, 70368760954879, 281475010265087, 1125899973951487
Offset: 1

Views

Author

Eric W. Weisstein, Mar 17 2004

Keywords

Comments

Cletus Emmanuel calls these "Kynea numbers".
Difference between the smallest digitally balanced number with 2n+4 binary digits and the largest digitally balanced number with 2n+2 binary digits (see A031443): 7 = 9-2 = 1001-10, 23 = 35-12 = 100011-1100, 79 = 135-56 = 10000111-111000 etc. - Juri-Stepan Gerasimov, Jun 01 2011

Examples

			G.f. = 7*x + 23*x^2 + 79*x^3 + 287*x^4 + 1087*x^5 + 4223*x^6 + 16639*x^7 + ...
		

Crossrefs

Cf. A091514 (primes of the form (2^n + 1)^2 - 2).
Cf. A244663.

Programs

  • Magma
    [(2^n+1)^2-2 : n in [1..30]]; // Wesley Ivan Hurt, Jul 08 2014
  • Maple
    A093069:=n->(2^n+1)^2-2: seq(A093069(n), n=1..30);
  • Mathematica
    a[ n_] := If[ n < 1, 0, 4^n + 2^(n + 1) - 1]; (* Michael Somos, Jul 08 2014 *)
    CoefficientList[Series[(7 - 26*x + 16*x^2)/((1 - x)*(2*x - 1)*(4*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 08 2014 *)
    LinearRecurrence[{7,-14,8},{7,23,79},30] (* Harvey P. Dale, Aug 25 2025 *)
  • PARI
    vector(100, n, (2^n+1)^2-2) \\ Colin Barker, Jul 08 2014
    
  • PARI
    Vec(-(16*x^2-26*x+7)/((x-1)*(2*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Jul 08 2014
    

Formula

a(n) = 4^n+2^(n+1)-1.
G.f.: -x*(7-26*x+16*x^2) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Jun 01 2011
a(n) = A092431(n+2) - A020522(n+1). - R. J. Mathar, Jun 01 2011
E.g.f.: -exp(x) + 2*exp(2*x) + exp(4*x) - 2. - Stefano Spezia, Dec 09 2019

Extensions

More terms from Colin Barker, Jul 08 2014

A098879 a(n) = (2^n - 1)^5 - 2.

Original entry on oeis.org

-2, -1, 241, 16805, 759373, 28629149, 992436541, 33038369405, 1078203909373, 34842114263549, 1120413075641341, 35940921946155005, 1151514816750309373, 36870975646169341949, 1180231376725002502141, 37773167607267111108605, 1208833588708967444709373
Offset: 0

Views

Author

Parthasarathy Nambi, Oct 13 2004

Keywords

Comments

5th-power analog of what for exponent 2 is A093112 (2^n-1)^2 - 2 = 4^n - 2^{n+1} - 1 and exponent 3 is A098878 (2^n - 1)^3 - 2. Primes include a(n) for n = 0, 2, 5, 6. These are "near-5th-power prime." Semiprimes include a(n) for n = 3, 8, 9, 10, 13, 15, 21, 29, 33, 40. - Jonathan Vos Post, May 03 2006

Examples

			If n=2, (2^2 - 1)^5 - 2 = 241 (a prime).
		

Crossrefs

Programs

  • Mathematica
    (2^Range[0,20]-1)^5-2 (* or *) LinearRecurrence[{63,-1302,11160,-41664,64512,-32768},{-2,-1,241,16805,759373,28629149},20] (* Harvey P. Dale, Nov 03 2016 *)
  • PARI
    a(n)=(2^n-1)^5-2 \\ Charles R Greathouse IV, Feb 19 2016

Formula

G.f.: (-2+125*x-2300*x^2+22640*x^3-57728*x^4+66560*x^5)/((-1+x)(-1+32*x)(-1+16*x)(-1+8*x)(-1+4*x)(-1+2*x)). - R. J. Mathar, Nov 14 2007

Extensions

More terms from Jonathan Vos Post, May 03 2006
Edited by N. J. A. Sloane, Sep 30 2007

A244845 Binary representation of 4^n - 2^(n+1) - 1.

Original entry on oeis.org

111, 101111, 11011111, 1110111111, 111101111111, 11111011111111, 1111110111111111, 111111101111111111, 11111111011111111111, 1111111110111111111111, 111111111101111111111111, 11111111111011111111111111, 1111111111110111111111111111
Offset: 2

Views

Author

Colin Barker, Jul 07 2014

Keywords

Examples

			a(3) is 101111 because A093112(3) = 47 which is 101111 in base 2.
		

Crossrefs

Cf. A093112.

Programs

  • Mathematica
    Table[FromDigits[IntegerDigits[4^n-2^(n+1)-1,2]],{n,2,15}] (* Harvey P. Dale, Oct 03 2016 *)
  • PARI
    vector(100, n, (100^(n+1)-9*10^(2+n)-1)/9)
    
  • PARI
    Vec(x^2*(89000*x^2-88790*x-111)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100))
    
  • PARI
    a(n) = subst(Pol(binary(4^n-2^(n+1)-1)), x, 10); \\ Michel Marcus, Jul 08 2014

Formula

a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3).
a(n) = (-1-9*10^(1+n)+100^n)/9.
G.f.: x^2*(89000*x^2-88790*x-111) / ((x-1)*(10*x-1)*(100*x-1)).

A331858 a(n) = (2^p-1)*(2^(p-1))*((2^p-1)^2-2), where p is the n-th prime.

Original entry on oeis.org

42, 1316, 475664, 131080256, 8783210218496, 2250975213522944, 147570574898545885184, 37778715690312487141376, 2475879193127080196116054016, 41538374636164863806350357434466304, 10633823951424046514111736193740701696, 178405961584350762488394070192754827810832384
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 29 2020

Keywords

Comments

Integers a(1), a(2), a(4), a(8) corresponding to p = 2, 3, 7, 19 are also terms of A331805. - Bernard Schott, Feb 04 2020

Crossrefs

Cf. A000040 (primes), A000396 (perfect numbers), A093112 ((2^n-1)^2-2), A060286 (2^(p-1)*(2^p-1)), A331805.

Programs

  • Mathematica
    f[p_] := (2^p-1)*(2^(p-1))*((2^p-1)^2-2); f @ Prime @ Range[12] (* Amiram Eldar, Jan 29 2020 *)
  • PARI
    [(2^p-1)*((2^p-1)^2-2)<<(p-1) | p<-primes(12)] \\ or: a(n,p=prime(n))={...}. - M. F. Hasler, Jan 29 2020

Formula

a(n) = A060286(n)*A093112(prime(n)). - M. F. Hasler, Jan 31 2020

A118558 a(n) = (2^n-1)^4 - 2.

Original entry on oeis.org

-2, -1, 79, 2399, 50623, 923519, 15752959, 260144639, 4228250623, 68184176639, 1095222947839, 17557851463679, 281200199450623, 4501401006735359, 72040003462430719, 1152780773560811519, 18445618199572250623, 295138898083176775679, 4722294425687923097599
Offset: 0

Views

Author

Jonathan Vos Post, May 03 2006

Keywords

Examples

			a(0) = (2^0 - 1)^4 - 2 = 0^4 - 2 = -2.
a(1) = (2^1 - 1)^4 - 2 = 1^4 - 2 = -1.
a(2) = (2^2 - 1)^4 - 2 = 3^4 - 2 = 79.
		

Crossrefs

Programs

Formula

a(n) = (2^n - 1)^4 - 2.
G.f.: (1984*x^4-2120*x^3+510*x^2-61*x+2) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)). - Colin Barker, Apr 30 2013

Extensions

Offset changed to 0 by Paolo Xausa, Apr 19 2024

A381698 Numbers of the form (2^k-1)^2 - 2 that are squarefree.

Original entry on oeis.org

7, 47, 223, 959, 3967, 16127, 261119, 1046527, 4190207, 16769023, 67092479, 268402687, 1073676287, 4294836223, 17179607039, 68718952447, 274876858367, 1099509530623, 4398042316799, 17592177655807, 70368727400447, 281474943156223, 1125899839733759, 4503599493152767, 18014398241046527
Offset: 1

Views

Author

Massimo Kofler, Mar 04 2025

Keywords

Crossrefs

Intersection of A093112 and A005117.
Cf. A000225.

Programs

  • Mathematica
    Select[Table[(2^n-1)^2 - 2, {n, 2, 30}], SquareFreeQ] (* Amiram Eldar, Mar 04 2025 *)
  • PARI
    select(issquarefree, vector(30, n, n++; (2^n-1)^2 - 2)) \\ Michel Marcus, Mar 04 2025
Showing 1-7 of 7 results.